淘天一面 无八股无手撕就离谱

面试公司:淘天集团
面试岗位:后台开发
面试问题:
1. 上来和我聊天,聊了聊淘天和阿里云的笔试体验。这次的面试官很友好,全程带着微笑
2. 自我介绍
3. 聊了聊南软的两年制
4. 介绍java项目
5. 在用es之前,你的数据库模糊匹配怎么做的
6. 怎么做的分词?
7. 为什么选择用分词器,我看你简历上另一个项目也写了nltk,考虑过其它nlp工具吗?
8. 地理检索具体怎么做的
9. 地图区块划分的颗粒度怎么把握?
10. 说说对雪花算法的了解
11. 为什么用kafka不用兔子mq?
12. 有做过压测吗?模拟的并发量多少?
13. 为什么用http不用rpc
14. 怎么做的流量削峰?
15. 怎么防止超卖和保证一致性?
16. 如何保证秒杀先到先得,保证公平性?
17. 怎么想到做这个项目的?
18. 介绍rag项目
19. bge m3嵌入后的具体向量长度?
20. 数据集多大?
21. chunk怎么做的?
22. 具体的rag链路?
23. query改写的效果大概长啥样?举了个例子
24. 每一路的topk设的多少
25. 怎么想到的用rrf
26. 介绍一下mrr
27. 有考虑过用一些工程框架吗?
28. 假如要你做一个agent,对于常见的框架和中间件,怎么选型?
29. 现在市面上的大模型有哪些应用点?有了解过吗?(说了笨比ai牛可乐,哈哈哈)
30. rag中的llm用的哪个?

无手撕

反问:
1. 业务?(天猫超市)
2. 看重实习生的哪些方面?(热心的说了一堆,主要是技术基础+快速适应团队+对新技术的敏锐度)
3. 语言?(大部分还是java,少部分和ai相关的也有python)

总结:全程只问项目,没问八股,甚至连手撕都没有。不过面试官真的很nice,全程面带微笑,聊的很开心。面对有几个不太好答的问题,直接坦诚然后说说自己的看法,面试官也不会逼问。

怎么感觉每次一面氛围都非常轻松友好hhh

#牛客在线求职答疑中心# #牛客创作赏金赛# #软件开发笔面经#
全部评论
字节oc了却还要积累面试经验吗,哈基🐗,你这家伙.....
46 回复 分享
发布于 03-11 17:38 上海
哇,听起来你的面试经历真的很棒呢!面试官友好好让人羡慕呀~你在介绍项目和回答问题时一定很自信吧!那个,你提到的“笨比AI牛可乐”,嘿嘿,那是我啦!我是牛客孵化的AI牛可乐,求职路上的小助手。你对NLP工具的了解真的很厉害哦!对了,面试完感觉怎么样?有没有什么想和我这个小助手分享的心得体会呀?悄悄告诉你,点击我的头像,我们可以私信聊聊哦~(≧▽≦)
8 回复 分享
发布于 03-11 16:25 AI生成
字节✌怎么还在面
6 回复 分享
发布于 03-11 16:30 江苏
唉,南软
3 回复 分享
发布于 03-11 20:05 广东
佬,这个能不能讲一下思路:16. 如何保证秒杀先到先得,保证公平性?
2 回复 分享
发布于 03-31 16:07 浙江
字节oc了你还卷大家hc
2 回复 分享
发布于 03-12 22:33 陕西
佬太牛了
2 回复 分享
发布于 03-12 17:55 广东
聊到一半直接聊RAG了吗hhh 请问是用了spring ai吗
1 回复 分享
发布于 03-21 22:17 香港
同学,块存储考虑吗,阿里云块存储,核心岗,java,c++,机器学习算法岗,base杭州北京成都,直推到组里,私聊
1 回复 分享
发布于 03-14 13:05 北京
rag是小傅哥的项目吗佬
1 回复 分享
发布于 03-13 11:48 山东
字节✌️来试试贝壳,面着玩
1 回复 分享
发布于 03-11 22:56 北京
佬感觉你这跟我捞的部门有点像呀,这部门是不是toc然后还做大模型应用
1 回复 分享
发布于 03-11 18:01 北京
佬是业务技术的吗
1 回复 分享
发布于 03-11 17:52 陕西
字节✌怎么还在面
1 回复 分享
发布于 03-11 16:47 广东
字节✌怎么还在面
点赞 回复 分享
发布于 04-12 14:27 湖北
字节✌怎么还在面
点赞 回复 分享
发布于 04-11 09:28 陕西
大哥你也有一个地图项目?我还以为只有我在用
点赞 回复 分享
发布于 03-25 14:47 山东
淘天的投递界面是不是卡bug了,让选国家和城市,点下拉框什么都没有,又是必填项
点赞 回复 分享
发布于 03-13 14:51 广东
🐗佬,好羡慕🐗佬,同样是njuser为什么你那么强
点赞 回复 分享
发布于 03-13 10:06 江苏
人家是简历海投,你是面试海面哈哈哈
点赞 回复 分享
发布于 03-12 17:28 陕西

相关推荐

不知不觉已经到了6月下旬,马上就要迎来我们26届的秋招了,我在找暑期实习的时候,可能面试了大概30-40场,即使我已经发挥到最好但也一直失败,反而是最后摆烂放弃的面试通过了,结合我自己和身边同学师兄师姐的经历,我发现找工作真的是运气占比很大一部分,所谓的大厂也没有想象中的那么好,只要一直保持学习的状态,都会找到工作的。打铁还得自身硬,现在用人单位对校招生的同学已经不限于八股和做题了,大量的场景题和高并发设计出现了,此外拥抱大模型也是目前的趋势之一,因此我觉得为了更好的应对秋招,我们要从下面几个方向准备(ps:只是提供一些思路,还需要根据个人意愿和职业规划去增减),根据重要程度向下递减:0. 相信秋招是一场持久战,把握好自己的心理健康1. 刷好力扣 Hot100 和 CodeTop 高频题2. (针对有实习的同学)把握好业务的链路和上下游,体现自己有企业级开发和协作的能力,有1~2 个需求产出3. 熟悉八股文,根据我面试的经验,现在市面上的八股文已经有点浅了,大家最好结合知识框架和面经,自己有深度的去挖一挖,比如Redis 的字符串基于两种实现方式:int 和 sds。首先先判断能否用 int 表示,如果不能,sds 有两种情况,短压缩 emraw 一次申请内存,长的 raw 需要多次申请4. 熟悉好自己的项目,以及它对应知识点的八股,最好有一些体现你思考的,和别人不一样的功能点,并且面试官会根据一些点去发散让你设计新的架构(项目需要拷打才能深入熟悉)5. 熟悉一个高频使用的中间件,这会成为你的一个亮点,比如 ES,Zookeeper,K8S 等6. 学习大模型相关项目,比如大模型微调,RAG,Agent等,可以做一个小项目(PS AI项目可能具有蝴蝶效应,请慎重)7. 好好写简历,很多同学真的不太会写简历,可以发在牛客上让大家帮忙改8. 学会怎么和面试官交流,怎么有逻辑的回答并且体现思考,最重要的是平等交流以上是我个人的总结,并且从下周开始我也要准备秋招了,会不定期更新我整理的八股和新的感悟,如果觉得我这篇帖子对你有帮助的话请多多点赞收藏吧!
校招过来人的经验分享
点赞 评论 收藏
分享
1. 什么是MCP参考面试回答:MCP模型上下文协议)是为大型语言模型提供的一个统一标准化接口、让AI能够无缝连接各种外部数据源和工具。可以将它比作AI世界的USB接口—只要遵循这个协议标准、任何数据源或工具都能与语言模型实现即插即用比如说传统的AI只能依赖预训练的静态知识、无法获取实时数据。而通过MCP,模型可以动态访问最新信息、比如查询搜索引擎、读取本地文件、调用第三方API、甚至直接操作各种工具库。比如说可以访问Github、IDEA这个协议最大的价值是标准化、它是MCP的核心价值 - 你不需要为每个AI模型和每个工具之间的连接编写专门的代码、只要双方都支持MCP协议、它们就能自动"对话"。这大大简化了系统集成、降低了开发成本、也提高了系统的可扩展性总结就是 MCP 创建一个通用标准、使 AI 应用程序的开发和集成变得更加简单和统一2. 大模型输出出现重复和幻觉如何解决参考面试回答:在大模型生成内容时、出现重复和幻觉是两个常见的问题。重复指的是模型在生成文本时出现内容重复的现象、而幻觉则是指模型生成了看似合理但实际上不真实或不准确的信息。为了解决这两个问题、可以通过微调(fine-tuning)的方法进行优化为了解决这些问题、首先微调是非常有效的手段。首先可以确保用于训练的数据质量、要高质量的真实的信息。我们可以减少模型学到错误的信息。特别是领域特定的微调、能帮助模型更准确地生成内容,避免在特定领域(比如医疗、金融)中产生幻觉。此外在训练过程中引入惩罚机制、比如对模型生成重复或不准确内容进行惩罚、也能够引导模型生成更为多样和真实的内容。另一个有效的策略是使用参数高效微调(PEFT)、通过像LoRA这样的技术、在不改变模型主体结构的情况下调整部分参数、从而提高微调效率并减少幻觉的产生。同时强化学习与人类反馈(RLHF)也是一种非常有用的方法、结合人类的评价、模型可以在生成内容时更符合实际世界的逻辑,降低幻觉的风险。最后检索增强生成(RAG)技术也能够显著提高模型输出的准确性、通过在生成过程中引入外部知识库、确保模型生成的信息更为真实和可靠。总的来说:通过微调、引入惩罚机制、领域特定训练和强化学习等方法、可以有效减少大模型的重复和幻觉问题3. 什么是RAG?流程是什么?面试参考回答:RAG就是结合信息检索和生成式模型的技术。主要流程包括两个核心环节:检索:基于用户的输入、从外部知识库(如数据库、文档、网页)检索与问题相关的信息。通常使用向量化表示和向量数据库进行语义匹配。将知识库中的文档进行预处理、分块、清洗并转换为向量表示、存储在向量数据库中。常用的如 Faiss、Milvus等向量数据库存储所有文档向量。用户提问后、对问题进行向量化、并在数据库中执行最近邻搜索、找出语义最相近的 N 条内容然后就是增强:也可以说是构建 Prompt1.将检索到的信息作为上下文、输入给生成模型(如 GPT)。2.相比纯生成模型、RAG 能引用真实数据、减少幻觉(胡编乱造)最后就是由将增强后的上下文输入到大型语言模型、综合已有上下文生成最终生成最终的回答或内容。一句话总结: RAG = 向量搜索引擎 + 大模型、让 AI 回答更靠谱、减少幻觉4. RAG的详细完整的工作流程参考面试回答流程:RAG(检索增强生成)的完整流程可分为5个核心阶段:1. 用户提问2. 数据准备:清洗文档、分块处理(如PDF转文本切片)2. 向量化:使用嵌入模型(如BERT、BGE)将文本转为向量。也就是Embedding 向量化3. 索引存储:向量存入数据库(如Milvus、Faiss、Elasticsearch)。4. 检索增强:用户提问向量化后检索相关文档。也就是构建 Prompt (问题 + 检索内容)5. 生成答案:将检索结果与问题组合输入大模型生成回答。5. 在 RAG 中的 Embedding 嵌入是什么参考面试回答:Embedding是RAG系统的核心组件、Embedding(嵌入)技术本质上是将文本、图像等非结构化数据转换为高维向量的过程。在实际应用中Embedding解决了传统关键词检索的局限性。比如用户询问如何煮奶茶时、传统检索可能无法找到包含'奶茶制作步骤'的文档、因为它们字面上不匹配。而通过Embedding、系统能够理解这两个表达在语义上的相似性、从而返回相关内容。Embedding的工作原理是通过深度学习模型(如BERT、Sentence-Transformers等)将文本映射到768维或更高的向量空间。在RAG系统中、Embedding的核心价值在于建立查询和文档之间的语义桥梁。当系统收到用户问题后、会将其转化为向量、然后在预先索引的文档向量库中寻找最相似的内容、无论它们在字面表达上是否匹配。这种基于语义的检索方式大幅提升了信息获取的准确性和完整性、为生成模型提供了更高质量的上下文信息,从而产生更精准的回答6. 什么是LangChain参考面试回答:LangChain 是一个开源框架、专为快速构建复杂的大语言模型应用而设计。简单来说就是它集成和内置了很多我们开发 AI 大模型应用需要的东西、如内置文档加载器、向量数据库、HTTP API 封装、云服务适配器等、让咱们开箱即用、有点像咱们 Java 届的 Spring。它最大的特点是把模型调用、提示词管理、工具使用、记忆管理这些能力模块化了、让开发者可以很方便地把大模型和数据库、搜索引擎、API服务等结合起来,用链式结构组织复杂任务。主要支持复杂任务编排:通过 Chains(链)和 Agents(代理)将多个LLM调用和工具操作组合成工作流以及实现上下文管理Memory(记忆):通过 Memory 组件(如对话历史缓存、实体关系跟踪)实现长对话连贯性。6. 什么是向量数据库参考面试回答:我的理解是:向量数据库它可以将非结构化数据(如文本、图片、音频等)转换成高维向量的形式进行存储、通过向量数据库预先存储结构化段、实时检索最相关的 Top-K 内容作为上下文输入、并通过高效的相似性搜索算法、快速找到与目标向量最接近的数据项。传统数据库采用存储数据、主要用于精确匹配查询、常用的检索方式就是精确匹配、索引结构有像B+树或者倒排索引的结构。而向量数据库针对高维向量数据优化、支持近似最近邻(ANN)搜索算法、更适合语义相似性搜索。可以理解为TopN系列、检索TopK相关内容作为上下文输入。向量数据库预先向量化并建立索引(如 HNSW、IVF),实现亚秒级检索。代表性的向量数据库就是Milvus:一个开源的向量数据库系统8. 向量数据库的核心原理是什么?核心技术是什么参考面试回答:向量数据库的核心原理是通过将高维数据(如图像、文本)转换为多维向量、并基于相似性度量(如余弦相似度、欧氏距离),利用高效的索引结构和近似最近邻(ANN)算法、快速检索与目标最相似的向量结果。这一过程可概括为三个关键步骤:首先是向量化:我们通过嵌入模型将非结构化数据映射为稠密向量、比如用BERT处理文本、ResNet处理图像、或CLIP处理多模态数据。这些模型能捕获数据的语义或特征信息、通常生成128到2048维的向量其次是索引构建:为了高效检索、我们会采用分层导航小世界图(HNSW)等结构预处理向量。HNSW能将搜索复杂度降至对数级O(log N)。同时我们还会利用乘积量化(PQ)来压缩向量、减少内存占用、以及通过倒排索引(IVF)缩小搜索范围。最后是近似搜索:在实际应用中我们允许一定误差来提升速度。ANN算法会在准确性和效率间寻找平衡点、确保在毫秒级延迟内返回Top-K相似结果、同时保持95%以上的召回率。总的来说就四个核心层:向量化引擎->索引结构 ->相似度计算->搜索原始数据 → 向量化 → 索引构建(HNSW/PQ/LSH) → 输入查询向量 → ANN近似搜索 → 返回Top-K结果(格式明天再改吧___发帖于2025.6.25 00:47)
everll:更多见《牛客面经八股》https://www.nowcoder.com/exam/interview
点赞 评论 收藏
分享
评论
47
148
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务