man~带着期许 回来发帖许愿

-man what can I say ? manba out
是的 uu们 我回来了 上一次发帖 还是半个月之前 而且很多之前的帖子也随颓废而消逝

-先说一下战绩吧  5场笔试(3个挂铁收到感谢 2个笔完无后续)、三四个一面挂、两个终面挂、一个hr面挂 依旧挂0
再次征战两周 沉淀笔试/面试 以为自己变强了 要把我失去的拿回来  
但是我依然还是那个所向披靡的fvv 不知道该该把天赋带到哪里

-今天收到校友的截图(附下图)
有喜有悲 开心的是楼主也是有fans的 也是有encourage到一些uu 说不定还是女粉呢 
伤的是:① 是“耐挂王” 不是“奶 挂王”  ②是 雀氏春招至今都没有发过oc贴 也是一路挂到现在 emo了三个月了 

期间也有hxd安慰说:“抑郁说明你活在过去  焦虑说明你活在未来 ”
 yep 铜三铁四补五 希望在即将结束的四月份 春风荡漾 风一往无前  许愿能oc拿到拿  ”该死的#offer#

#春招##测试#
全部评论
佬没有保底of吗
点赞 回复 分享
发布于 04-27 17:06 北京
佬是什么学历,为什么你这样的人都找不到
点赞 回复 分享
发布于 04-26 02:57 广东
加油加油,一直在关注你,你的水平绝对是没问题的
点赞 回复 分享
发布于 04-25 16:58 江苏
加油
点赞 回复 分享
发布于 04-24 01:23 上海
加油加油,会好起来的
点赞 回复 分享
发布于 04-23 23:04 广东
大佬加油
点赞 回复 分享
发布于 04-23 22:46 四川
坚持就有希望,冲就完事了!希望下次发帖是OC
点赞 回复 分享
发布于 04-23 22:26 广东

相关推荐

RAG 是啥?RAG,全称 Retrieval-Augmented Generation,意思是 “ 检索增强生成 ” 。以前的 AI 模型知识有限,还可能答错或者答得不靠谱,而且企业用起来也不安全。RAG 就是来解决这些问题的!它能让 AI 在回答前先去 “ 图书馆 ” (知识库)搜资料,再给出答案。RAG 怎么干活?RAG 的工作流程简单来说就是三步走:你问我答:用户问问题,比如 “ 今天吃什么好?”,RAG 系统接收到了。翻书找答案:RAG 的 “ 小助手 ” 会飞快地在知识库里找相关资料,比如美食推荐、营养搭配之类的。整合输出:把找到的资料和问题混合在一起,扔进大模型里加工,生成一个超棒的答案,比如 “ 今天你可以试试清蒸鲈鱼,肉嫩味美,还很营养哦!”。RAG 的核心组件RAG 主要有两个核心组件:检索器(Retriever):就像在图书馆里负责找书的管理员,能在知识库里快速定位到相关资料。生成器(Generator):拿到资料后,它就像个作家,把资料和问题结合,生成最终的回答。RAG 跟其他技术比有啥厉害之处?对比直接用大模型 API 或者微调,RAG 有这些牛 X 的地方:知识更新快:知识库能实时更新,AI 就能立马掌握新知识,不用重新训练,省时省力。省钱省心:不用大规模重新训练模型,成本大大降低。不会忘事儿:不会像微调那样,在没训练过的任务上表现不好,稳稳地保留了模型的通用能力。不过呢,RAG 也有点小缺点,比如在特别需要深度理解和风格模仿的问题上,可能就没微调那么厉害。RAG 的关键环节和挑战文档切分(Chunking):把文档切成合适的大小,就像切蛋糕一样,得找到那个完美的大小,不然可能影响检索效率。Embedding 模型选择:选对模型就像给汽车选发动机,直接决定向量表示的质量,影响后续的检索和生成效果。检索效果评估:得时刻监控检索的召回率和精确率,就像给检索系统做定期体检,有问题及时调整。向量数据库的作用:它是高效存储和检索向量表示的中流砥柱,就像给知识库装上了超级导航,能快速定位到相关信息。整体效果评估:要时不时对 RAG 系统来个全方位体检,从生成答案的准确性、相关性等方面打分,确保系统一直在线。
点赞 评论 收藏
分享
评论
7
1
分享

创作者周榜

更多
牛客网
牛客企业服务