熊厂一面面经

🔞 熊厂
🧑‍🔧 大模型web端应用(算法岗,偏业务)
😶‍🌫️ 项目提问
1. 自我介绍
2. 介绍项目
3. 数据集是如何处理和制作的?
4. 如果要做一个RAG的问答系统,请你设计系统模块。
5. 手撕编辑距离(二维动态规划)
反问:主营业务?我的工作?实习时间要求?

面试时间只有半个小时,所以没问很多内容,面试官一上来先自我介绍,感觉很随和,后面还展示百度的web端AI产品,整个过程也很愉快。(面试官还对我的代码中冗余的部分进行了指导)
#面经#
全部评论

相关推荐

✅小红书商业化部门 NLP-内容理解 4面1️⃣第一面1、n时间复杂度找出数组第K大的值说出思路了 用快排思想,不过没写出来,不过面试官还行 没写出来也让我过了然后问的比较古老的一些Nlp细节2、比如问你为啥分类任务用交叉熵,不用MSE?直接反向传播原理公式,如果用MSE 你最后可能会出现梯度消失的现象还问了LN BN的细节准备的比较到位,所以都答出来了2️⃣第二面问的我好像是概率题,没写代码1、你一个硬币,均值多少次,可以丢出正反面问项目3️⃣第三面应该是答的最好的了,项目答的应该让面试官很满意,然后代码题的话1、第一个 就是 一个矩阵,从左往右 升,从上往下升,n时间复杂度,找出target我觉得太简单了,让面试官再出了一个2、又给了一道:动态规划,最长递增子序列✅知乎:AI中台 三面1️⃣第一面1、聊项目 模型细节,attention的作用,为啥要用FFN,还有LN中间说到一个点,我说为啥要在LN重新训练两个参数,我说是不然影响性能,但是其实应该是影响泛化能力2、代码题目:找出字符串的最长回文子串2️⃣第二面要我写attention的伪代码我写了一下 不过其实还要加上Mask 忘记加了还问了我 会用rebase操作吗,我说不会。问了交叉熵的细节,到底对预测对的产生loss 还是预测错的产生作用。代码题目不太记得3️⃣第三面项目负责人,项目聊的很开心代码题没写出来,不过也让我过了1、代码题目:给我一个字符串 让我判断是不是一个数学算式阿里 高德 ✅1️⃣第一面面试官挺直接的,问了项目,然后问我只做了分类是吗,我说的是的,他说你直说就是了。。。 尴尬1、概率题 给我一个函数 可以等概率生成0-5随机数字 f5() 要我依靠这个 生成一个f7()2、给我一个生成器 随机生成01 要我等概率生成一个生成器 做一个二分判别2️⃣第二面1、P9大佬,问到我一个问题,如果你需要100W数据 你怎么去跟你上司申请你要100W数据的标注资源。或者说 你现在手里有10W标注数据,你觉得你还需要再继续增加标注数据吗我觉得这个问题是我没想到的,因为我这边业务线训练数据都是比较充足2、代码题 给你一个数组,给我n时间复杂度 生成一个数组 这个数组的每个位置的字 都等于原先数组其他位置的乘积。 思路:空间换时间🍊如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看14道真题和解析
点赞 评论 收藏
分享
1️⃣自我介绍:【⌚️10分钟】点评:流水账,有些磕磕绊绊,自我介绍环节的项目介绍的很详细,非常冗余。优化:写逐字稿,背诵,提升语言表达能力。2️⃣经常问题的问题优化:【⌚️20分钟】1:transform结构了解吗?回答点评:回答的很简单,5分吧,说了transform的结构是encode-decode结构,分块,每个块里面有四个组建,MHA、FFN、LN、残差链接,介绍和理解不深刻。提升指导:梳理回答逻辑结构,讲解MHA、FFN、LN、残差链接的添加逻辑和含义,其中MHA给出代码层面理解,从2分钟的回答变成6分钟的回答。2:多头自注意力机制是啥?公式是啥?代码你会写吗?回答点评:讲了公式,但是掌握的不够细致,pytorch代码框架不熟悉,attention_mask机制没有写出来。提升指导:讲述代码的原理,如何使用代码回答问题,展示自己的理解深刻。3:rag中的多路召回是什么?embeding为啥用智源的BGE-large/Base?回答点评:使用了BM25和向量召回,但是没有讲出来两个的区别和联系提升指导:先讲原理,再讲述下语义理解能力和泛化能力的区别,计算的效率,两个互为补充等。3️⃣不会回答的问题指导:【⌚️40分钟】1:  LN不太会回答,看网上的回答很多,但是不是理解层面。2:我的向量召回是faiss做的,和这个相关的问题我如何准备?3:经常会被问到rag用的啥框架,这个问题如何回答?还需要准备框架的知识吗?4:面试官经常问我,rag的模型是啥?有做微调吗?如果不做微调怎么回答?5:大模型还需要补充那些知识?📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看8道真题和解析
点赞 评论 收藏
分享
Hej0330:产运、用户、内容运营都还比较适合~ 实习经历的建议: 第一段:经历里各个部分的阐述是结构化的,但是也是割裂的三段内容。建议增加一句话的描述,改成经过竞品调研后你们最终定位的核心长板是什么,用户是谁,围绕这个长板你们怎么设计增长运营方法(如果落地实践了更好),对于新用户使用门槛你们是怎么思考和设计的。 第二段:同样的问题。建议把你接手时社群运营的目标是什么,问题是什么,写出来,再列你的核心动作 其他:如果是内容运营岗位,小红书博主的那段还是可以多说说的,比如你的账号人设怎么定位的,品牌合作是怎么思考的
点赞 评论 收藏
分享
07-15 14:22
已编辑
中山大学 全栈开发
积功德职位描述:1. 负责机器学习、深度学习等算法在得物业务场景的产品化工作2. 包括但不限于如下方向:目标检测,图像分割,图像分类,NLP,多模态,大模型等职位要求:1. 熟悉Linux环境开发,熟练掌握 Python 语言,有较强的编码能力2. 熟练使用一种深度学习框架如Pytorch、TensorFlow等,熟悉OpenCV、NumPy、Pandas等常用库3. 对云原生有一定了解,有容器化使用经验者优先4. 有GPU编程经验、熟悉算法模型部署、 TensorRT 优化工具者优先5. 图像处理、模式识别、计算机视觉、计算机图形学、机器学习等计算机相关专业在读研究生优先一面(2025.7.10)30minHR发给我的邮件是上午 11 点,我 11 点进会议等了半个多小时没人退出去了,12 点多的时候,HR微信联系我说怎么没进飞书会议,然后我赶紧爬起来进会议。。。搞忘了,日本和国内有一个小时时差,麻了。。。1. 面试官进来直接说你的简历我已经看过了,自我介绍一下吧2. 几乎是纯聊天。。。面试官说我的经历非常匹配(暗示3. 大模型有没有推理优化经验?无,我说以前主要做CV算法,接触和使用过扩散模型。。。4. 算法题:最大子数组和(秒了)5. 硕士研究内容?6. 偏向算法还是调度?有没有调度相关经验?无。。。7. 你们推理部署是怎么做的?我介绍了自己之前负责和参与过的GPU侧和端侧的推理部署8. 写过CUDA吗?熟不熟?学校里深入学过,之后因为业务关系,没啥使用场景,可以再捡起来9. 你还做过AIGC?有没有NLP相关经验?基本的概念和算法比如 tf-idf, n-gram,word2vec 这些都是知道的,做过文本分类任务,了解 Transformer、CLIP10. 有没有多卡推理优化经验?有多卡训练经验,多卡推理没做过。。。11. 问什么时候能来实习?答最快这月底就能到岗,3个月时间可以保证,每周5天12. 你知道岗位base地吗,能接受吗?我说就是期望在国内实习,上海完全能接受,表现出很想去的意愿🤣13. 反问:组内主要业务场景?商品内容理解、文本理解、AI鉴定商品真伪、推理优化等。学聪明了,面试官框框介绍完,我添一句“那还是挺期待的”🤣,疯狂暗示一面面试官貌似就是老大,结束后HR直接说过了,进offer流程。。。今年暑期准备就去这个了,主要是面试官和善,面试体验好、务实,其余都是次要的(没认真找,随便投投,攒攒面试经验,我觉得现在找工作看眼缘、看运气。本来想着回家吃饭睡觉的 日本饭好难吃啊。。。
查看11道真题和解析
点赞 评论 收藏
分享
评论
3
3
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务