算法求职简历该怎么写大模型微调

结合最近辅助修改的简历及项目,老师总结了部分大模型微调简历的踩雷点。
🙅‍♂️错误示范:在 x任务中,获取 xxx 条数据,通过规则 or 脚本清洗出 x 条数据,然后微调 y 大模型,在业务上提升 x 个点。
✍🏻原因:大模型微调的平台是现成的,基模是现成的,体现不出核心能力。
✅应该怎么写?
首先介绍业务背景:
业务是一个销售对话业务,机器人是销售,代替真人,直接面对用户。我们会给模型设定任务,任务是 prompt 。
步骤1️⃣.提取训练数据
问题:
1.真人通话每通电话任务是未知的,我们
训练数据是任务+通话的 pair 对。
2.真人通话很乱,与客户的对话是各种交
叉的,导致 asr 后并不是一人一轮。
解决方案:
1.首先通过大模型 prompt 对该通电话提取任务,得到任务+ pair 对。需要用到 cot + reflection +多 Ilm 一致性+ debating 的模式。
2.使用大模型根据以上任务和真人对话,
让大模型编写出通话内容。提问,为什么要编写而不是直接用?
步骤2️⃣.制定训练数据集
问题:
1、正常的对话内容,前面几句和后面几句基本上一致的。都是问候和拜拜,但是也有一些差异。
2、因为都是相似场景,虽然任务不同,但是很多场景语义很相似。
解决方案:
1、基于轮次的权重采样:通过轮次设定权重进行 weighting sample 。解决问候和拜拜的高占比问题。
2、基于语义的采样:使用 bert 对对话内容进行 embedding ,然后使用层次聚类通过调节阈值聚类出相似语义的类。对一个类里的样本进行随机采样,提问,为什么要对重复语义的数据进行下采样?
3、基于客户类型和产品的采样,因为很多产品是热品,导致对话内容有偏,用户类型一样,需按照类型调整整体比例采样。提问,为什么要这么采样?
步骤3️⃣.制定训练数据集
我们直接把输出当作 target 进行训练。使用的 lora 训练,但是 lora alpha 设定成为4倍的时候达到了比较好的效果,经验值不同任务不一样,提问,在各种情况下要怎么调?
步骤4️⃣.dpo训练
问题:v1版本训练时,很多输出内容是对的,但是输出的语气不太像真人,机器人味还是很严重。
解决方案:由于训练本身是有 ground truth 的,因此使用v1训练的模型,预测训练集,使用大模型对比两者语气不符合训练集的拿出来,使用训练集的 ground truth 和模型的预测数据作为 dpo 训练对,对v1版本模型重新训练。
📳这里老师只是简要进行概括解答,具体情况和详细解答可以咨询辅导,如果想了解项目辅导,提升面试能力,欢迎后台联系。
#算法# #简历中的项目经历要怎么写# #算法岗面试# #互联网大厂招聘#
全部评论

相关推荐

1.自我介绍,拷打项目为什么用多智能体不用单智能体了解哪些大模型应用框架(你项目中的竞品)rag知识库是怎么搭建的,怎么进行的分片操作如何让大模型更加理解医学名词(一般大模型理解不了医学名词)知识库的大小,我答了一个很大的数,问接口速度问题(一脸懵逼,没考虑过,只考虑过rag层面的优化)询问rag评估(孩子寄了我没做,但是我背过),问具体评估数值(🐔没做过,瞎逼逼了一个数字)优化空间从项目拷打中看的出来面试官水平确实比较高,而且是个声音很好听的小哥哥2.写算法,尽然是acm格式,幸好函数写出来了,可惜的是输入输出没写出来,链表的输入输出真的难3.反问环节:做什么业务,不足之处
梗小姐:佬,你投的不会是这个吧。 wxg-微信支付-模型组 主要工作方向: 1.利用支付数据、社交数据等制定安全策略进行数据挖掘、特征工程 2.前沿模型研究:利用LLM代替xgboost等传统风控模型 本次实习生,可能的工作:使用司内大模型平台进行agent构建,集成到企业微信机器人里,作为内部工具以消息告警等形式提醒产品同学,其实还是偏开发。 掌握python和java应该够用了。 需要掌握的基本知识 简单的开发技能 agent基本原理(重点:function call,可能会被问了解mcp吗) LLM基本知识(训练、微调和部署推理,偏工程化),最好再掌握一些RAG知识
查看14道真题和解析
点赞 评论 收藏
分享
bg: 双9,2024级硕,传统工科专业,算法知识范围仅限知道一些机器学习理论,了解基本的pytorch语法,打算砖码算法岗位,计划研1下找一段实习,从今年3月初已经开始在各大平台搜索实习经验了。转码时间线:2.28开始有实习想法,但是在岗位上纠结,在后端,大模型岗位纠结。最终决定大模型岗3.1-3.7吴恩达机器学习3.8-3.21李沐深度学习3.22开始刷leedcode3.24开始做简历3.24-3.25在github上跑开源项目:BERT部署+文本分类3.25-4.1在github上跑开源项目:ChatGLM-6B部署+LLaMA-Factory微调+Prompt模板3.27注册BOSS直聘3.28参加了第一场初创公司大模型的面试,感觉面试还可以,基本上能hold住但最后也都无疾而终了,盲猜可能是技术栈不太相符以及觉着我是低年级。3.29-4.5在github上跑开源项目:Llama3-8B+RAG4.7收到三家公司面试4.7下午面试一家中厂,问题太工程,而我是凑开源项目+偏算法理论性的科研,完全经不住拷打。4.8收到第一个offer,岗位感觉偏大模型调研,拒绝。4.10收到第二个offer,离学校路程半小时+大模型核心岗,但小厂,接收。回归整个实习准备,对我个人而言其实最难的是不断细化调整方向,以及在面试pass被无数次的心态调整,但总体来说是看着自己一步步的进步。记得第一次修改简历时,我对着空白文档发呆了两个小时,如今却能快速抓住岗位JD的关键词进行精准匹配;曾经在群面中紧张到声音发抖,现在面对压力面试已经能从容展现逻辑思维。
实习,不懂就问
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
06-24 20:25
腾讯今年实习招了这么多人,后面秋招还会招人吗??想着秋招再战来着
牛客96559368...:腾讯好像2020年之后就是实习生招得多,应届生基本上不招,纯实习转正
点赞 评论 收藏
分享
评论
2
11
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务