高效路径规划:BIT*算法解析

BIT*算法概述

BIT*(Batch Informed Trees)算法是一种基于采样的路径规划算法,结合了RRT*(快速随机探索树)和A*算法的优点。它通过动态调整采样策略和启发式搜索,显著提高了路径规划的效率,尤其在复杂高维空间中表现优异。该算法由Jonathan D. Gammell等人提出,广泛应用于机器人导航、自动驾驶等领域。

核心原理

BIT*算法通过批量处理采样点并利用启发式信息优化搜索过程。其核心思想是将状态空间划分为多个批次,逐步优化路径成本。算法通过维护一个优先队列,动态选择最有潜力的节点进行扩展,从而减少不必要的计算。

启发式函数在BIT*中扮演关键角色,通常采用欧几里得距离或曼哈顿距离作为估计成本。算法通过比较当前路径成本与启发式估计,智能地调整采样区域,避免在低概率区域浪费资源。

实现步骤

初始化阶段 构建初始树结构,定义起点和终点。设置采样批次大小和最大迭代次数。初始化优先队列,存储待扩展的节点。

批量采样 在状态空间中生成一批随机样本点。根据当前最优路径成本,动态调整采样区域,集中在潜在优化空间。

节点扩展 从优先队列中选择最优节点进行扩展。计算新节点到终点的启发式成本,更新优先队列。若新节点提供更优路径,则更新树结构。

路径优化 持续迭代直至满足终止条件。每次迭代后,检查是否找到更优路径,并更新启发式信息。最终输出平滑且成本最低的路径。

代码示例

import numpy as np
from queue import PriorityQueue

class BITStar:
    def __init__(self, start, goal, bounds, batch_size=100):
        self.start = start
        self.goal = goal
        self.bounds = bounds
        self.batch_size = batch_size
        self.tree = {tuple(start): None}
        self.cost = {tuple(start): 0}
        self.queue = PriorityQueue()

    def heuristic(self, node):
        return np.linalg.norm(np.array(node) - np.array(self.goal))

    def sample_batch(self):
        samples = []
        for _ in range(self.batch_size):
            sample = tuple(np.random.uniform(low, high) for low, high in zip(self.bounds[0], self.bounds[1]))
            samples.append(sample)
        return samples

    def plan(self, max_iter=1000):
        for _ in range(max_iter):
            samples = self.sample_batch()
            for sample in samples:
                nearest = min(self.tree.keys(), key=lambda n: np.linalg.norm(np.array(n) - np.array(sample)))
                new_cost = self.cost[nearest] + np.linalg.norm(np.array(nearest) - np.array(sample))
                if new_cost < self.cost.get(tuple(sample), float('inf')):
                    self.tree[tuple(sample)] = nearest
                    self.cost[tuple(sample)] = new_cost
                    self.queue.put((new_cost + self.heuristic(sample), sample))
        return self.tree

性能优化

BIT算法通过动态调整采样区域和批量处理,显著减少计算开销。与RRT相比,它在高维空间中的收敛速度更快,路径质量更高。实验表明,BIT*在复杂环境中能将规划时间缩短30%-50%。

启发式信息的合理选择直接影响算法性能。在实际应用中,可根据具体场景定制启发式函数,例如在非结构化环境中使用机器学习模型预测路径成本。

应用场景

BIT*算法适用于需要高效路径规划的领域,如无人机避障、机械臂运动规划。其批量采样特性特别适合处理动态环境,可实时更新障碍物信息并重新规划。

在自动驾驶中,BIT*可用于全局路径规划,结合局部规划器实现平滑轨迹生成。算法的增量式特性使其能够适应实时变化的交通状况。

BbS.okapop123.sbs/PoSt/1122_208177.HtM
BbS.okapop124.sbs/PoSt/1122_198496.HtM
BbS.okapop125.sbs/PoSt/1122_166617.HtM
BbS.okapop126.sbs/PoSt/1122_969861.HtM
BbS.okapop127.sbs/PoSt/1122_014952.HtM
BbS.okapop128.sbs/PoSt/1122_762536.HtM
BbS.okapop129.sbs/PoSt/1122_655567.HtM
BbS.okapop130.sbs/PoSt/1122_571325.HtM
BbS.okapop131.sbs/PoSt/1122_575683.HtM
BbS.okapop132.sbs/PoSt/1122_419324.HtM
BbS.okapop123.sbs/PoSt/1122_774103.HtM
BbS.okapop124.sbs/PoSt/1122_262776.HtM
BbS.okapop125.sbs/PoSt/1122_058630.HtM
BbS.okapop126.sbs/PoSt/1122_352621.HtM
BbS.okapop127.sbs/PoSt/1122_307879.HtM
BbS.okapop128.sbs/PoSt/1122_873123.HtM
BbS.okapop129.sbs/PoSt/1122_817169.HtM
BbS.okapop130.sbs/PoSt/1122_224770.HtM
BbS.okapop131.sbs/PoSt/1122_261202.HtM
BbS.okapop132.sbs/PoSt/1122_312647.HtM
BbS.okapop123.sbs/PoSt/1122_056619.HtM
BbS.okapop124.sbs/PoSt/1122_630029.HtM
BbS.okapop125.sbs/PoSt/1122_035289.HtM
BbS.okapop126.sbs/PoSt/1122_030348.HtM
BbS.okapop127.sbs/PoSt/1122_385040.HtM
BbS.okapop128.sbs/PoSt/1122_946826.HtM
BbS.okapop129.sbs/PoSt/1122_186175.HtM
BbS.okapop130.sbs/PoSt/1122_771868.HtM
BbS.okapop131.sbs/PoSt/1122_144210.HtM
BbS.okapop132.sbs/PoSt/1122_559264.HtM
BbS.okapop123.sbs/PoSt/1122_516469.HtM
BbS.okapop124.sbs/PoSt/1122_493103.HtM
BbS.okapop125.sbs/PoSt/1122_566015.HtM
BbS.okapop126.sbs/PoSt/1122_247645.HtM
BbS.okapop127.sbs/PoSt/1122_141113.HtM
BbS.okapop128.sbs/PoSt/1122_199907.HtM
BbS.okapop129.sbs/PoSt/1122_805049.HtM
BbS.okapop130.sbs/PoSt/1122_736268.HtM
BbS.okapop131.sbs/PoSt/1122_416061.HtM
BbS.okapop132.sbs/PoSt/1122_846226.HtM
BbS.okapop123.sbs/PoSt/1122_802235.HtM
BbS.okapop124.sbs/PoSt/1122_852647.HtM
BbS.okapop125.sbs/PoSt/1122_069786.HtM
BbS.okapop126.sbs/PoSt/1122_469788.HtM
BbS.okapop127.sbs/PoSt/1122_249703.HtM
BbS.okapop128.sbs/PoSt/1122_366983.HtM
BbS.okapop129.sbs/PoSt/1122_523751.HtM
BbS.okapop130.sbs/PoSt/1122_995396.HtM
BbS.okapop131.sbs/PoSt/1122_251289.HtM
BbS.okapop132.sbs/PoSt/1122_112400.HtM
BbS.okapop123.sbs/PoSt/1122_989133.HtM
BbS.okapop124.sbs/PoSt/1122_821917.HtM
BbS.okapop125.sbs/PoSt/1122_809849.HtM
BbS.okapop126.sbs/PoSt/1122_675632.HtM
BbS.okapop127.sbs/PoSt/1122_296835.HtM
BbS.okapop128.sbs/PoSt/1122_188809.HtM
BbS.okapop129.sbs/PoSt/1122_708311.HtM
BbS.okapop130.sbs/PoSt/1122_721155.HtM
BbS.okapop131.sbs/PoSt/1122_730606.HtM
BbS.okapop132.sbs/PoSt/1122_827835.HtM
BbS.okapop123.sbs/PoSt/1122_772720.HtM
BbS.okapop124.sbs/PoSt/1122_513130.HtM
BbS.okapop125.sbs/PoSt/1122_632789.HtM
BbS.okapop126.sbs/PoSt/1122_185260.HtM
BbS.okapop127.sbs/PoSt/1122_423238.HtM
BbS.okapop128.sbs/PoSt/1122_096970.HtM
BbS.okapop129.sbs/PoSt/1122_312922.HtM
BbS.okapop130.sbs/PoSt/1122_079028.HtM
BbS.okapop131.sbs/PoSt/1122_534225.HtM
BbS.okapop132.sbs/PoSt/1122_712556.HtM
BbS.okapop123.sbs/PoSt/1122_502661.HtM
BbS.okapop124.sbs/PoSt/1122_945167.HtM
BbS.okapop125.sbs/PoSt/1122_403482.HtM
BbS.okapop126.sbs/PoSt/1122_084343.HtM
BbS.okapop127.sbs/PoSt/1122_694736.HtM
BbS.okapop128.sbs/PoSt/1122_785920.HtM
BbS.okapop129.sbs/PoSt/1122_640331.HtM
BbS.okapop130.sbs/PoSt/1122_875475.HtM
BbS.okapop131.sbs/PoSt/1122_120684.HtM
BbS.okapop132.sbs/PoSt/1122_432954.HtM

#牛客AI配图神器#

全部评论

相关推荐

纯真的河老师在喝茶:第一个是这个时间点岗位少,第二个是这个简历重复度太高了,10个有9个简历差不多的
点赞 评论 收藏
分享
10-17 17:54
门头沟学院 Java
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务