淘天大模型岗一面

1. 自我介绍

2. 挑一个你最熟悉的大模型项目,讲讲它的目标,你主要负责什么,以及你觉得最有意思的技术点。

3. 在Transformer的Decoder里,我们为什么需要用Mask把未来的信息“遮住”?从代码实现上讲,这个Mask具体是怎么作用在Self-Attention分数上的?

4. 关于LayerNorm放在残差连接的“前面”还是“后面”(Pre-LN vs Post-LN),社区里有很多讨论。这两种设计选择,主要会影响训练过程的哪些方面?你更倾向于哪一种,为什么?

5. 我们要在线上部署一个大模型提供服务,推理速度和吞吐量是个大问题。像vLLM这样的工具,它主要是通过什么核心思想(比如PagedAttention)来解决KV Cache的内存问题,从而提升推理效率的?

6. 我们有一个基础模型,但它不太会“听人话”。如果想把它训练成一个能很好遵循指令的聊天助手,通常有几步?能简单说说SFT(监督微调)和基于人类反馈的对齐(比如PPO/DPO)分别是在解决什么问题吗?

7. 假设我们有一个效果很好的70B大模型,但因为太大太慢,没法直接上线。现在需要你把它“变小变快”。你会考虑用哪些方法(比如剪枝、量化)?各自有什么优缺点?

8. 相比于让大模型直接回答问题,现在很流行的RAG(检索增强生成)方案,它最大的好处是什么?主要解决了什么痛点?

9. 我们的RAG系统上线后,发现有时候还是会“胡说八道”,或者答非所问。如果让你去排查,你会从哪些方面入手?(比如是检索模块没找对,还是生成模块没理解好?)

10. 核心代码模式算法题:二叉树的中序遍历

11. 反问

全部评论
同学,瞅瞅我司,医疗独角兽,校招刚开,名额有限,先到先得,我的主页最新动态,绿灯直达,免笔试~
2 回复 分享
发布于 08-28 08:43 广东

相关推荐

✅一面 1.首先是自我介绍和过项目,面试官还一起探讨项目用到的方法,可行性之类的2.介绍一下 CLIP3.了解 LoRA 吗, LoRA 微调的原理是什么4.了解哪些多模态大模型,简要介绍几个5.BLIP的三个损失函数分别是什么,数据是怎样清洗的6.BLIP2相对于 BLIP 有哪些改进,BLIP3又有哪些改进7.Qwen- VL 的三个训练流程分别是什么,有什么作用8.视觉编码器和 LLM 连接时,使用BLIP2中 Q - Former 那种复杂的 Adaptor 好还是 LLaVA 中简单的 MLP 好,说说各自的优缺点9.代码:实现多头自注意力一面比较常规,几乎都是八股问题,我觉得只要了解常见的多模态大模型都问题不大,主要还是要理解各个模型设计的动机是什么,这也是面试最喜欢考察的✅二面1.自我介绍和过项目,简要问了项目中使用某些方法的动机,以及是否会导致其他的问题2.了解 Transformer 吗,编码器和解码器的注意力有什么区别,在计算注意力中时除以 dk \ sqrt { d _ k }\ sqrt [ d _ k }的原因是什么3.后来有哪些比较经典的基于 Transformer 的语言模型, Qwen 相比于原始 Transformer 有哪些结构上的改动,Qwen2又有哪些改进4.了解 RLHF 吗, DPO 和 PPO 有什么区别, Loss 是什么样的,各自的优缺点是什么5.介绍一下 CLIP ,还了解什么其他的对比学习方法6.开放题:了解哪些多模态大模型,目前多模态大模型最的问题是什么7.代码:1143.最长公共子序列二面其实也偏常规,几乎也都是八股问题,但是也考察了一些对模型的理解以及知识面的广度,整体来说比一面的难度大一些✅三面:1.自我介绍,然后详细过了一下项目2.了解哪些大模型和多模态大模型,然后就聊了大模型这一路是怎么发展过来的,Transformer 、 BERT 、 GPT 、 LLaMA 、 Qwen ix ,以及当时的o1推理模型3.平常有尝试过训练过大模型吗,规模小一点的也没关系4.聊天,包括职业规划等等三面比较轻松,面试官说知识点前面两面都考察过了,三面就轻松一些,大概40来分钟吧📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
评论
8
47
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务