目前可用的mnist_dataset下载
[in]
【注】根据需要改变one_hot参数的值
import tensorflow as tf
# Import MINST data
tf.logging.set_verbosity(tf.logging.ERROR)#不显示错误信息
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False,
source_url='http://yann.lecun.com/exdb/mnist/')
[out]
对于模型训练时常提示MNIST_DATA数据格式不对,此时需要将数据转换为onehot编码。
# Start training
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#print(type(batch_ys))
batch_ys=tf.one_hot(batch_ys,10,on_value=1,off_value=None,axis=0)
#将tensor向量转换为numpy数组
sess.run(tf.global_variables_initializer())
batch_ys = batch_ys.eval(session=sess).T
#print(type(batch_ys))
# Fit training using batch data
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print ("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy for 3000 examples
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print ("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))