题解 洛谷P1447 【NOI2010 能量采集】 题目大意:给定n和m,求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1 i和j的限制不同,传统的线性筛法失效了,这里我们考虑容斥原理 令f[x]为GCD(i,j)=x的数对(i,j)的个数,这个不是很好求 我们令g[x]为存在公因数=x的数对(i,j)的个数(注意不是最大公因数!),显然有g[x]=(n/x)*(m/x) 但是这些数对中有一些的最大公因数为2d,3d,4d,我们要把他们减掉 于是最终f[x]=(n/x)*(m/x)-Σ(2*x<=i*x<=min...