大模型搜索算法工程师-国际化搜索(TikTok)【面向2027届及以后毕业硕士/博士】职位描述:1. 参与国际化短视频搜索引擎的核心研发,利用千亿规模大语言模型(LLM)、多模态大模型(MLLM)等前沿技术,驱动搜索算法的创新升级,打造全球领先的智能搜索体验;2. 推动国际化短视频搜索算法提升,可选的方向包括:(1)探索前沿大语言模型技术:构建与优化千亿级参数规模的语言模型,推动深度学习全链路应用,优化搜索相关性、时效性等;研究前沿大模型预训练策略及高效RLHF算法,提升搜索算法的智能理解与泛化能力;(2)推动跨模态前沿技术创新:利用多模态大模型和视觉语言模型,实现高效视觉表征学习和视频内容的深度理解,为搜索引擎赋予更强大的检索能力;研究多模态融合技术,提升跨模态匹配的准确性和效率,增强搜索引擎对视频、图像与文本的综合感知能力;(3)构建个性化智能搜索算法:应用大规模机器学习技术,解决搜索中的个性化推荐问题,实现更精准、更懂用户需求的搜索结果呈现;(4)实现海量数据系统优化:深入研究千亿级数据规模下的离线计算与分布式系统性能优化,构建高可用、高吞吐、低延迟的在线搜索服务,保障系统稳定与用户体验。职位要求:1. 本科及以上学历在读,计算机、人工智能等相关专业优先;2. 出色的机器学习和深度学习基础能力,在NLP、CV、机器学习等方面有一定的经验;3. 扎实的代码能力、数据结构和基础算法功底;4. 出色的分析问题、解决问题能力;5. 熟悉Linux开发环境,熟练使用C++和Python语言;6. 有大模型算法、搜索算法经验者加分;7. 有ICLR、NeurIPS、ICML、ACL、EMNLP、NAACL、CVPR、ICCV、ECCV等顶会论文发表的博士研究生加分。- EN:Large Model Algorithm Engineer – Internationalized search (TikTok) [For Master’s/PhD Graduates of 2027 and Beyond]Job Description:1. Engage in the core research and development of our internationalized short video search engine, leveraging large language models (LLMs) and multimodal large models (MLLMs) with hundreds of billions of parameters to drive innovative upgrades in search algorithms and deliver a world-class intelligent search experience.2. Optional directions including:(1) Explore SOTA LLM technologies: drive deep learning applications with LLMs, enhance search relevance and recency; develop advanced pre-training strategies and efficient RLHF algorithms to improve search performance.(2) Innovate cross-modal algorithms: utilize vision-language models for visual representation learning and video understanding, strengthening search retrieval capabilities.(3) Develop personalized search algorithms: apply large-scale machine learning to tackle personalized recommendation challenges, delivering precise, user-centric results.(4) Optimize massive data systems: implement offline computing and distributed system optimization at scale; build highly available, high-throughput, low-latency online search services to ensure stability and superior user experience.Job Requirements:Minimum Qualifications- Bachelor degree or above in the field of computer science, artificial intelligence, or related discipline.- Strong foundation in machine learning and deep learning, with experience in NLP, CV, or ML.- Solid programming skills and fundamental algorithm & data structure knowledge.- Excellent analytical and problem-solving abilities.- Proficient in Linux development environment and skilled in C++ and Python.Preferred Qualifications- Experience in large model algorithms and search algorithms.- PhD candidates with publications in top-tier conferences such as ICLR, NeurIPS, ICML, ACL, EMNLP, NAACL, CVPR, ICCV and ECCV.