题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。 解题思路:青蛙每一次跳跃只有两种选择:一是再跳1级阶梯到达第n级阶梯,此时小青蛙处于第n-1级阶梯;或者再跳2级阶梯到达第n级阶梯,此时小青蛙处于n-2级阶梯于是,n级阶梯的跳法总是依赖于前n-1级阶梯的跳法总数f(n-1)和前n-2级阶梯的跳法总数f(n-2).因为只有两种可能性,所以,f(n)=f(n-1)+f(n-2); 递推公式f(n)=f(n-1)+f(n-2)很熟悉,就是斐波那契数列求和(Sn=2a(n)+a(n-1)-1)。 递归求法: pub...