阿里妈妈广告算法一面面经

1. 自我介绍
2. 聊项目
3. 手撕代码1: 用pytorch写self-attention
4. 手撕代码2: 前K个高频数
5. 手撕代码3: 二叉树前序、中序、后序遍历,然后根据后序和中序结果写前序遍历
6. 了解广告、推荐算法吗?
7. 介绍下wide&deep、deepfm
8. 多任务模型怎么联合学习
9. 过拟合的原因和解决办法
10. 决策树,xgb和随机森林的区别
11. 对数据做归一化的方式有哪些?
12. 如何去除噪声异常点?
13. 有哪些数据降维的方式?PCA的原理?

在关注搜广推算法方向的校招/社招/实习同学们,想拿到搜广推算法offer,简历中没有岗位对口/高质量的项目经历,会较难通过面试甚至难以进面。
同学们可以了解下算法项目辅导,在简历中增加一个高含金量的项目,助你斩获offer~

#面经#  #校招#  #广告算法#  #阿里妈妈#  #阿里#
全部评论

相关推荐

面的是字节的国际电商部门感觉是卷中卷了被狠狠拷打了😭面试问题:- 解释一下ROC曲线与PR曲线的关系、ROC曲线与PR曲线的适用场景- 介绍一下贝叶斯定理(贝叶斯公式和全概率公式)- 考了一个概率题:已知一个随机发生器,生成 0 的概率为  p ,生成 1 的概率为  1 - p 。请构造一个新的随机发生器,使其生成 0 和 1 的概率均为 1/2。- (针对简历提问)了解矩阵分解吗 MF、LFM吗- 训练模型的时候,怎么才能知道模型是不是过拟合了?除了看训练集和测试集的准确率,还有哪些方法可以防止过拟合?比如正则化、交叉验证这些,能不能展开讲讲怎么用?- 推荐系统里老听到CTR预估和序列推荐模型,讲讲这些模型是干啥的?比如DIN、DIEN这些CTR模型是怎么捕捉用户兴趣的?还有GRU4Rec、Caser这些序列模型是怎么处理用户行为序列的?它们各自解决了什么问题?代码题:- 给定整数数组 nums,求最大和的连续子数组,并返回该最大和。(最大子数组和LeetCode53)- 手写一个二分类交叉熵bce,使用np(只把bce的公式写出来了,然后拷打怎么计算梯度,最好熟悉一下二分类梯度怎么回传的,被拷打到了这里)一面一般是组内员工,平时比较忙,这场面试约在的中午11点,所以如果能够把你的项目介绍得详细一点,就容易不让面试官问太多问题,一般我大概是2-3min自我介绍,然后再10min介绍一个项目(2-3个项目说完差不多就去一大半面试时间了),然后最后面试官不是主动型+忙着去吃饭,就会问些常见的面经,然后碰巧见过的爆率很高,然后直接吟唱。这里拷打了概率类型的问题,印象里至少有4/32次面试提到了类似的概率场景题目,建议也是稍微复习一下,至少看看基础的内容。国际电商(tiktok)据说晋升不错(同时也卷),毕竟是出海业务,但是是真的难进(听说很多清北大佬都挂了),不太懂想要招什么人(岗位名额实在太少)  
查看8道真题和解析 面试问题记录
点赞 评论 收藏
分享
评论
1
12
分享

创作者周榜

更多
牛客网
牛客企业服务