大模型面经每日总结 (滴滴大模型)

 什么是MOE(混合专家模型)?其核心设计思想是什么?  
 DeepSeek MOE是哪家公司的产品?其架构设计有哪些特色?  
 门控网络(Gating Network)的作用是什么?
 如何解决MOE中专家负载不均衡问题?  
 在分布式训练中,MOE如何实现专家参数的高效更新?  
 DeepSeek MOE如何优化长序列场景下的推理效率?  
 如何评估MOE模型的稀疏性效率?请列举至少2个指标。  
 若设计多模态MOE模型,门控网络应如何融合图像/文本特征?  
 若MOE推理时出现“专家选择震荡”,如何解决?
#滴滴##大模型##算法#
全部评论
方便问下是滴滴什么部门的llm面试吗?
点赞 回复 分享
发布于 06-11 17:09 北京

相关推荐

1.自我介绍,拷打项目为什么用多智能体不用单智能体了解哪些大模型应用框架(你项目中的竞品)rag知识库是怎么搭建的,怎么进行的分片操作如何让大模型更加理解医学名词(一般大模型理解不了医学名词)知识库的大小,我答了一个很大的数,问接口速度问题(一脸懵逼,没考虑过,只考虑过rag层面的优化)询问rag评估(孩子寄了我没做,但是我背过),问具体评估数值(🐔没做过,瞎逼逼了一个数字)优化空间从项目拷打中看的出来面试官水平确实比较高,而且是个声音很好听的小哥哥2.写算法,尽然是acm格式,幸好函数写出来了,可惜的是输入输出没写出来,链表的输入输出真的难3.反问环节:做什么业务,不足之处
梗小姐:佬,你投的不会是这个吧。 wxg-微信支付-模型组 主要工作方向: 1.利用支付数据、社交数据等制定安全策略进行数据挖掘、特征工程 2.前沿模型研究:利用LLM代替xgboost等传统风控模型 本次实习生,可能的工作:使用司内大模型平台进行agent构建,集成到企业微信机器人里,作为内部工具以消息告警等形式提醒产品同学,其实还是偏开发。 掌握python和java应该够用了。 需要掌握的基本知识 简单的开发技能 agent基本原理(重点:function call,可能会被问了解mcp吗) LLM基本知识(训练、微调和部署推理,偏工程化),最好再掌握一些RAG知识
查看14道真题和解析
点赞 评论 收藏
分享
1️⃣自我介绍:【⌚️10分钟】点评:流水账,有些磕磕绊绊,自我介绍环节的项目介绍的很详细,非常冗余。优化:写逐字稿,背诵,提升语言表达能力。2️⃣经常问题的问题优化:【⌚️20分钟】1:transform结构了解吗?回答点评:回答的很简单,5分吧,说了transform的结构是encode-decode结构,分块,每个块里面有四个组建,MHA、FFN、LN、残差链接,介绍和理解不深刻。提升指导:梳理回答逻辑结构,讲解MHA、FFN、LN、残差链接的添加逻辑和含义,其中MHA给出代码层面理解,从2分钟的回答变成6分钟的回答。2:多头自注意力机制是啥?公式是啥?代码你会写吗?回答点评:讲了公式,但是掌握的不够细致,pytorch代码框架不熟悉,attention_mask机制没有写出来。提升指导:讲述代码的原理,如何使用代码回答问题,展示自己的理解深刻。3:rag中的多路召回是什么?embeding为啥用智源的BGE-large/Base?回答点评:使用了BM25和向量召回,但是没有讲出来两个的区别和联系提升指导:先讲原理,再讲述下语义理解能力和泛化能力的区别,计算的效率,两个互为补充等。3️⃣不会回答的问题指导:【⌚️40分钟】1:  LN不太会回答,看网上的回答很多,但是不是理解层面。2:我的向量召回是faiss做的,和这个相关的问题我如何准备?3:经常会被问到rag用的啥框架,这个问题如何回答?还需要准备框架的知识吗?4:面试官经常问我,rag的模型是啥?有做微调吗?如果不做微调怎么回答?5:大模型还需要补充那些知识?📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看8道真题和解析
点赞 评论 收藏
分享
评论
3
23
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务