IDEA研究院大模型面经

1.自我介绍
2.实习经历,具体做什么?怎么做?
3.拷打项目
4.Lora是什么?怎么做的
5.指令微调是怎么做的?斯坦福羊驼数据是怎么来的?自己有用过这个技术吗?
6.两道手撕题(木桶效应,短板已寄)

我觉得回答得还行,但是手撕题没做出来,不说了刷题去了。
全部评论
实习吗?
点赞 回复 分享
发布于 07-17 13:12 河北
我感觉更多可能是hc太少吧,我投了两次,第一次还说非常缺人结果投简历后连反馈都没有。
点赞 回复 分享
发布于 2024-06-22 15:58 北京

相关推荐

GRPO(Group Relative Policy Optimization)虽然最初是为强化学习中的reasoning任务(如需要多步决策、逻辑推理的任务)设计的,但其核心思想——通过组内策略的相对比较来优化策略——也可以应用于非reasoning任务(如简单的控制任务、分类任务甚至生成任务)。以下是具体的分析和建议:首先我们看下GRPO的关键创新点是:✅组内相对比较(Group Relative):将策略分成若干组(group),在组内比较不同策略的表现,而非绝对优化单个策略。✅相对策略梯度:通过组内策略的相对优势(relative advantage)计算梯度,降低方差并提升稳定性。这种思想本质上是一种基于比较的优化方法,与任务是否需要“reasoning”无直接关系,因此可以迁移到非reasoning任务中。🤔那么有哪些非Reasoning任务的适用场景呢?(1)简单控制任务(如机器人控制)问题:传统PPO可能因稀疏奖励或高方差导致训练不稳定。GRPO改进:将不同控制策略分组(例如不同参数化的控制器),在组内比较它们的表现,选择相对更优的策略更新。示例:机械臂抓取任务中,组内可以包含不同的抓取轨迹策略,通过相对优势选择更稳定的策略。(2)生成任务(如文本/图像生成)问题:生成模型的策略优化通常依赖对抗训练(GAN)或最大似然,容易陷入模式崩溃。GRPO改进:将生成器分成多个组(例如不同初始化或架构的子生成器),通过组内生成样本的质量相对比较优化策略。示例:在文本生成中,组内比较不同生成策略的流畅性、多样性等指标。(3)分类/回归任务问题:传统监督学习直接优化损失函数,可能对噪声敏感。GRPO改进:将模型的不同参数化版本(如不同dropout、超参数)分组,通过组内相对性能(如验证集准确率)更新模型。示例:图像分类中,组内比较不同数据增强策略的效果。✴️总结GRPO可以用于非reasoning任务,但需重新设计组的划分方式和相对比较的指标。其核心优势在于通过组内相对优化降低方差,适合奖励稀疏或需要多策略并行的场景。如果任务本身已有高效优化方法(如标准的监督学习),GRPO可能不会带来显著提升。🍊如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
1️⃣抖音一面1、聊项目。2、AUC的两种公式是?你能证明这两种等价的吗?3、BERT-CRF中,为什么要加CRF?好处是?4、self-attention为什么要用QKV三个矩阵,不用有什么问题?有没有哪个模型的Q和K矩阵是一样的?5、reinforce属于on-policy还是off-policy?为什么?6、reinforce带上baseline好处是?reinforce的loss写一下?7、策略梯度会推导吗?简单写一下?8、代码题(代码题一般别着急写,先跟面试官说下思路,确定了再写):lc 46,全排列(lc表示leetcode,下同)。lc 73,矩阵置0。2️⃣抖音二面1、介绍项目。2、知识蒸馏有哪几种?你觉得哪种效果最好?3、nlp的数据增强方法,主要有哪几种?每一种举个例子?4、分类的损失函数为什么是交叉熵而不是mse?5、BERT对输入文本的长度有什么限制,为什么要限制长度呢?6、BigBird里面有哪几种注意力机制?相比原始transformer的self-attention的优势?7、场景题:如何根据拼多多的商品数量,估计淘宝的商品数量?8、给出emb_size, max_len, vocab_size, ff_inner_size,num_heads, 12层,求BERT参数量。9、代码题:n皇后问题。3️⃣抖音三面‍1、简单聊项目。2、CRF和HMM区别?CRF为什么比HMM效果好?3、如果BERT词表很大,比如vocab_size达到几百万,怎么办?4、快速手写一些transformer的mha(多头注意力),伪代码意思一下就行。5、为什么对比学习中,temperature很小,而知识蒸馏的temperature比较大?6、你觉得在抖音买东西,和淘宝、拼多多他们的区别是?(我没在抖音买过,就只能现场编。)7、你最近看到过哪些paper?简单介绍下?8、你觉得自己有那些优缺点?平时喜欢怎么缓解压力?📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看26道真题和解析
点赞 评论 收藏
分享
07-21 17:12
已编辑
中山大学 全栈开发
积功德职位描述:1. 负责机器学习、深度学习等算法在得物业务场景的产品化工作2. 包括但不限于如下方向:目标检测,图像分割,图像分类,NLP,多模态,大模型等职位要求:1. 熟悉Linux环境开发,熟练掌握 Python 语言,有较强的编码能力2. 熟练使用一种深度学习框架如Pytorch、TensorFlow等,熟悉OpenCV、NumPy、Pandas等常用库3. 对云原生有一定了解,有容器化使用经验者优先4. 有GPU编程经验、熟悉算法模型部署、 TensorRT 优化工具者优先5. 图像处理、模式识别、计算机视觉、计算机图形学、机器学习等计算机相关专业在读研究生优先一面(2025.7.10)30minHR发给我的邮件是上午 11 点,我 11 点进会议等了半个多小时没人退出去了,12 点多的时候,HR微信联系我说怎么没进飞书会议,然后我赶紧爬起来进会议。。。搞忘了,日本和国内有一个小时时差,麻了。。。1. 面试官进来直接说你的简历我已经看过了,自我介绍一下吧2. 几乎是纯聊天。。。面试官说我的经历非常匹配(暗示)3. 大模型有没有推理优化经验?无,我说以前主要做CV算法,接触和使用过扩散模型,这也算CV大模型🤗4. 算法题:最大子数组和(秒了)5. 硕士研究内容?6. 偏向算法还是调度?有没有调度相关经验?无。。。7. 你们推理部署是怎么做的?我介绍了自己之前负责和参与过的GPU侧和端侧的推理部署8. 写过CUDA吗?熟不熟?学校里深入学过,之后因为业务关系,没啥使用场景,可以再捡起来9. 你还做过AIGC?有没有NLP相关经验?基本的概念和算法比如 tf-idf, n-gram,word2vec 这些都是知道的,做过文本分类任务,了解 Transformer、CLIP10. 有没有多卡推理优化经验?有多卡训练经验,多卡推理没做过。。。11. 问什么时候能来实习?答最快这月底就能到岗,3个月时间可以保证,每周5天12. 你知道岗位base地吗,能接受吗?我说就是期望在国内实习,上海完全能接受,表现出很想去的意愿🤣13. 反问:组内主要业务场景?商品内容理解、文本理解、AI鉴定商品真伪、推理优化等。学聪明了,面试官框框介绍完,我添一句“那还是挺期待的”🤣,疯狂暗示一面面试官貌似就是老大,结束后HR直接说过了,进offer流程。。。今年暑期准备就去这个了,主要是面试官和善,面试体验好、务实,其余都是次要的(没认真找,随便投投,攒攒面试经验,我觉得现在找工作看眼缘、看运气。本来想着回家吃饭睡觉的 日本饭好难吃啊。。。
查看11道真题和解析
点赞 评论 收藏
分享
1️⃣自我介绍:【⌚️10分钟】点评:流水账,有些磕磕绊绊,自我介绍环节的项目介绍的很详细,非常冗余。优化:写逐字稿,背诵,提升语言表达能力。2️⃣经常问题的问题优化:【⌚️20分钟】1:transform结构了解吗?回答点评:回答的很简单,5分吧,说了transform的结构是encode-decode结构,分块,每个块里面有四个组建,MHA、FFN、LN、残差链接,介绍和理解不深刻。提升指导:梳理回答逻辑结构,讲解MHA、FFN、LN、残差链接的添加逻辑和含义,其中MHA给出代码层面理解,从2分钟的回答变成6分钟的回答。2:多头自注意力机制是啥?公式是啥?代码你会写吗?回答点评:讲了公式,但是掌握的不够细致,pytorch代码框架不熟悉,attention_mask机制没有写出来。提升指导:讲述代码的原理,如何使用代码回答问题,展示自己的理解深刻。3:rag中的多路召回是什么?embeding为啥用智源的BGE-large/Base?回答点评:使用了BM25和向量召回,但是没有讲出来两个的区别和联系提升指导:先讲原理,再讲述下语义理解能力和泛化能力的区别,计算的效率,两个互为补充等。3️⃣不会回答的问题指导:【⌚️40分钟】1:  LN不太会回答,看网上的回答很多,但是不是理解层面。2:我的向量召回是faiss做的,和这个相关的问题我如何准备?3:经常会被问到rag用的啥框架,这个问题如何回答?还需要准备框架的知识吗?4:面试官经常问我,rag的模型是啥?有做微调吗?如果不做微调怎么回答?5:大模型还需要补充那些知识?📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看8道真题和解析
点赞 评论 收藏
分享
评论
2
9
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务