我们是一家AI Agent公司,深圳南山,正在招Agent后端开发,有兴趣聊聊吗
点赞 评论

相关推荐

今天老师为大家梳理了10道RAG大模型必备面试题,供各位同学参考。1️⃣Q1:如何评估RAG生成结果的质量?A1:① 事实准确性(Factual Accuracy):对比标准答案;② 引用精确度(Citation Precision):生成内容与引用文档的相关性;③ ROUGE/L等自动指标(需谨慎,可能与事实性脱钩)。2️⃣Q2:如何优化检索的召回率(Recall)?A2:① 使用Query扩展(同义词替换/LLM改写);② 多向量表示(HyDE生成假设文档再检索);③ 调整分块策略(重叠分块/多粒度分块)。3️⃣Q3:RAG如何处理多文档冲突信息?A3:①  让LLM总结共识点并标注分歧(提示词控制);② 按文档来源权威性加权(如医学指南>普通文章);  ③ 返回多视角答案(需明确说明冲突存在)。4️⃣Q4:如何解决“检索偏好”问题(Retrieval Bias)?A4:当检索结果质量差时强制生成会导致错误。解决方案:① 训练检索评估模块过滤低质结果;② 引入回退机制(如返回“无答案”);③ 迭代检索(Re-Rank或多轮检索)。5️⃣Q5:如何优化长文档检索效果?A5:① Small-to-Big检索:先检索小分块,再关联其所属大文档;② 层次检索:先定位章节,再章节内分块检索;③ 图结构:用知识图谱关联文档片段。6️⃣Q6:解释HyDE(Hypothetical Document Embeddings)原理?A6:让LLM根据Query生成假设性答案,将其作为“伪文档”嵌入向量,再用该向量检索真实文档。解决Query与文档表述差异问题。7️⃣Q7:什么是迭代检索(Iterative Retrieval)?A7:多轮检索:首轮检索结果输入LLM生成初步答案,再以该答案为新Query二次检索,循环直到满足条件。适合复杂推理场景。8️⃣Q8:Self-RAG的核心创新点是什么?A8:引入可学习检索信号:模型自主决定何时检索(Retrieve on Demand),并生成特殊Token(如[Retrieval]、[No Retrieval])控制流程。9️⃣Q9:RAG如何适配实时更新知识库A9:① 检索器使用近实时索引(如Elasticsearch增量更新);② 生成器无需重训,但需监控新数据分布偏移。1️⃣0️⃣Q10:用户查询“2025年诺贝尔奖获得者”,但知识库只更新到2024年,RAG如何应对?A10:设计策略:① 检索器返回最新文档(2024年);② 生成器明确回答“截至2024年数据,最新获得者为XX,2025年结果尚未公布”;③ 添加时间敏感性警告。🍊如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
GRPO(Group Relative Policy Optimization)虽然最初是为强化学习中的reasoning任务(如需要多步决策、逻辑推理的任务)设计的,但其核心思想——通过组内策略的相对比较来优化策略——也可以应用于非reasoning任务(如简单的控制任务、分类任务甚至生成任务)。以下是具体的分析和建议:首先我们看下GRPO的关键创新点是:✅组内相对比较(Group Relative):将策略分成若干组(group),在组内比较不同策略的表现,而非绝对优化单个策略。✅相对策略梯度:通过组内策略的相对优势(relative advantage)计算梯度,降低方差并提升稳定性。这种思想本质上是一种基于比较的优化方法,与任务是否需要“reasoning”无直接关系,因此可以迁移到非reasoning任务中。🤔那么有哪些非Reasoning任务的适用场景呢?(1)简单控制任务(如机器人控制)问题:传统PPO可能因稀疏奖励或高方差导致训练不稳定。GRPO改进:将不同控制策略分组(例如不同参数化的控制器),在组内比较它们的表现,选择相对更优的策略更新。示例:机械臂抓取任务中,组内可以包含不同的抓取轨迹策略,通过相对优势选择更稳定的策略。(2)生成任务(如文本/图像生成)问题:生成模型的策略优化通常依赖对抗训练(GAN)或最大似然,容易陷入模式崩溃。GRPO改进:将生成器分成多个组(例如不同初始化或架构的子生成器),通过组内生成样本的质量相对比较优化策略。示例:在文本生成中,组内比较不同生成策略的流畅性、多样性等指标。(3)分类/回归任务问题:传统监督学习直接优化损失函数,可能对噪声敏感。GRPO改进:将模型的不同参数化版本(如不同dropout、超参数)分组,通过组内相对性能(如验证集准确率)更新模型。示例:图像分类中,组内比较不同数据增强策略的效果。✴️总结GRPO可以用于非reasoning任务,但需重新设计组的划分方式和相对比较的指标。其核心优势在于通过组内相对优化降低方差,适合奖励稀疏或需要多策略并行的场景。如果任务本身已有高效优化方法(如标准的监督学习),GRPO可能不会带来显著提升。🍊如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
点赞 评论 收藏
分享
牛客网
牛客网在线编程
牛客网题解
牛客企业服务