HarmonyOS运动开发:如何绘制运动速度轨迹
前言
在户外运动应用中,绘制运动速度轨迹不仅可以直观地展示用户的运动路线,还能通过颜色变化反映速度的变化,帮助用户更好地了解自己的运动状态。然而,如何在鸿蒙系统中实现这一功能呢?本文将结合实际开发经验,深入解析从数据处理到地图绘制的全过程,带你一步步掌握如何绘制运动速度轨迹。
一、核心工具:轨迹颜色与优化
绘制运动速度轨迹的关键在于两个工具类:PathGradientTool
和PathSmoothTool
。这两个工具类分别用于处理轨迹的颜色和优化轨迹的平滑度。
1.轨迹颜色工具类:PathGradientTool
PathGradientTool
的作用是根据运动速度为轨迹点分配颜色。速度越快,颜色越接近青色;速度越慢,颜色越接近红色。以下是PathGradientTool
的核心逻辑:
export class PathGradientTool { /** * 获取路径染色数组 * @param points 路径点数据 * @param colorInterval 取色间隔,单位m,范围20-2000,多长距离设置一次颜色 * @returns 路径染色数组 */ static getPathColors(points: RunPoint[], colorInterval: number): string[] | null { if (!points || points.length < 2) { return null; } let interval = Math.max(20, Math.min(2000, colorInterval)); const pointsSize = points.length; const speedList: number[] = []; const colorList: string[] = []; let index = 0; let lastDistance = 0; let lastTime = 0; let maxSpeed = 0; let minSpeed = 0; // 第一遍遍历:收集速度数据 points.forEach(point => { index++; if (point.totalDistance - lastDistance > interval) { let currentSpeed = 0; if (point.netDuration - lastTime > 0) { currentSpeed = (point.netDistance - lastDistance) / (point.netDuration - lastTime); } maxSpeed = Math.max(maxSpeed, currentSpeed); minSpeed = minSpeed === 0 ? currentSpeed : Math.min(minSpeed, currentSpeed); lastDistance = point.netDistance; lastTime = point.netDuration; // 为每个间隔内的点添加相同的速度 for (let i = 0; i < index; i++) { speedList.push(currentSpeed); } // 添加屏障 speedList.push(Number.MAX_VALUE); index = 0; } }); // 处理剩余点 if (index > 0) { const lastPoint = points[points.length - 1]; let currentSpeed = 0; if (lastPoint.netDuration - lastTime > 0) { currentSpeed = (lastPoint.netDistance - lastDistance) / (lastPoint.netDuration - lastTime); } for (let i = 0; i < index; i++) { speedList.push(currentSpeed); } } // 确保速度列表长度与点数一致 if (speedList.length !== points.length) { // 调整速度列表长度 if (speedList.length > points.length) { speedList.length = points.length; } else { const lastSpeed = speedList.length > 0 ? speedList[speedList.length - 1] : 0; while (speedList.length < points.length) { speedList.push(lastSpeed); } } } // 生成颜色列表 let lastColor = ''; let hasBarrier = false; for (let i = 0; i < speedList.length; i++) { const speed = speedList[i]; if (speed === Number.MAX_VALUE) { hasBarrier = true; continue; } const color = PathGradientTool.getAgrSpeedColorHashMap(speed, maxSpeed, minSpeed); if (hasBarrier) { hasBarrier = false; if (color.toUpperCase() === lastColor.toUpperCase()) { colorList.push(PathGradientTool.getBarrierColor(color)); continue; } } colorList.push(color); lastColor = color; } // 确保颜色列表长度与点数一致 if (colorList.length !== points.length) { if (colorList.length > points.length) { colorList.length = points.length; } else { const lastColor = colorList.length > 0 ? colorList[colorList.length - 1] : '#FF3032'; while (colorList.length < points.length) { colorList.push(lastColor); } } } return colorList; } /** * 根据速度定义不同的颜色区间来绘制轨迹 * @param speed 速度 * @param maxSpeed 最大速度 * @param minSpeed 最小速度 * @returns 颜色值 */ private static getAgrSpeedColorHashMap(speed: number, maxSpeed: number, minSpeed: number): string { const range = maxSpeed - minSpeed; if (speed <= minSpeed + range * 0.2) { // 0-20%区间配速 return '#FF3032'; } else if (speed <= minSpeed + range * 0.4) { // 20%-40%区间配速 return '#FA7B22'; } else if (speed <= minSpeed + range * 0.6) { // 40%-60%区间配速 return '#F5BE14'; } else if (speed <= minSpeed + range * 0.8) { // 60%-80%区间配速 return '#7AC36C'; } else { // 80%-100%区间配速 return '#00C8C3'; } } }
2.轨迹优化工具类:PathSmoothTool
PathSmoothTool
的作用是优化轨迹的平滑度,减少轨迹点的噪声和冗余。以下是PathSmoothTool
的核心逻辑:
export class PathSmoothTool { private mIntensity: number = 3; private mThreshhold: number = 0.01; private mNoiseThreshhold: number = 10; /** * 轨迹平滑优化 * @param originlist 原始轨迹list,list.size大于2 * @returns 优化后轨迹list */ pathOptimize(originlist: RunLatLng[]): RunLatLng[] { const list = this.removeNoisePoint(originlist); // 去噪 const afterList = this.kalmanFilterPath(list, this.mIntensity); // 滤波 const pathoptimizeList = this.reducerVerticalThreshold(afterList, this.mThreshhold); // 抽稀 return pathoptimizeList; } /** * 轨迹线路滤波 * @param originlist 原始轨迹list,list.size大于2 * @returns 滤波处理后的轨迹list */ kalmanFilterPath(originlist: RunLatLng[], intensity: number = this.mIntensity): RunLatLng[] { const kalmanFilterList: RunLatLng[] = []; if (!originlist || originlist.length <= 2) return kalmanFilterList; this.initial(); // 初始化滤波参数 let lastLoc = originlist[0]; kalmanFilterList.push(lastLoc); for (let i = 1; i < originlist.length; i++) { const curLoc = originlist[i]; const latLng = this.kalmanFilterPoint(lastLoc, curLoc, intensity); if (latLng) { kalmanFilterList.push(latLng); lastLoc = latLng; } } return kalmanFilterList; } /** * 单点滤波 * @param lastLoc 上次定位点坐标 * @param curLoc 本次定位点坐标 * @returns 滤波后本次定位点坐标值 */ kalmanFilterPoint(lastLoc: RunLatLng, curLoc: RunLatLng, intensity: number = this.mIntensity): RunLatLng | null { if (this.pdelt_x === 0 || this.pdelt_y === 0) { this.initial(); } if (!lastLoc || !curLoc) return null; intensity = Math.max(1, Math.min(5, intensity)); let filteredLoc = curLoc; for (let j = 0; j < intensity; j++) { filteredLoc = this.kalmanFilter(lastLoc.longitude, filteredLoc.longitude, lastLoc.latitude, filteredLoc.latitude); } return filteredLoc; } 轨迹抽稀 • @param inPoints 待抽稀的轨迹list • @param threshHold 阈值 • @returns 抽稀后的轨迹list / private reducerVerticalThreshold(inPoints:RunLatLng[],threshHold:number):RunLatLng[]{ if(!inPoints||inPoints.length<=2)return inPoints||[]; const ret: RunLatLng[] = []; for (let i = 0; i < inPoints.length; i++) { const pre = this.getLastLocation(ret); const cur = inPoints[i]; if (!pre || i === inPoints.length - 1) { ret.push(cur); continue; } const next = inPoints[i + 1]; const distance = this.calculateDistanceFromPoint(cur, pre, next); if (distance > threshHold) { ret.push(cur); } } return ret; } / • 轨迹去噪 • @param inPoints 原始轨迹list • @returns 去噪后的轨迹list / removeNoisePoint(inPoints:RunLatLng[]):RunLatLng[]{ if(!inPoints||inPoints.length<=2)return inPoints||[]; const ret: RunLatLng[] = []; for (let i = 0; i < inPoints.length; i++) { const pre = this.getLastLocation(ret); const cur = inPoints[i]; if (!pre || i === inPoints.length - 1) { ret.push(cur); continue; } const next = inPoints[i + 1]; const distance = this.calculateDistanceFromPoint(cur, pre, next); if (distance < this.mNoiseThreshhold) { ret.push(cur); } } return ret; } / • 获取最后一个位置点 / private getLastLocation(points:RunLatLng[]):RunLatLng|null{ if(!points||points.length===0)return null; return points[points.length-1]; } / • 计算点到线的垂直距离 / private calculateDistanceFromPoint(p:RunLatLng,lineBegin:RunLatLng,lineEnd:RunLatLng):number{ const A=p.longitude-lineBegin.longitude; const B=p.latitude-lineBegin.latitude; const C=lineEnd.longitude-lineBegin.longitude; const D=lineEnd.latitude-lineBegin.latitude; const dot=A * C+B * D; const len_sq=C * C+D * D; const param=dot/len_sq; let xx: number, yy: number; if (param < 0 || (lineBegin.longitude === lineEnd.longitude && lineBegin.latitude === lineEnd.latitude)) { xx = lineBegin.longitude; yy = lineBegin.latitude; } else if (param > 1) { xx = lineEnd.longitude; yy = lineEnd.latitude; } else { xx = lineBegin.longitude + param * C; yy = lineBegin.latitude + param * D; } const point = new RunLatLng(yy, xx); return this.calculateLineDistance(p, point); } / • 计算两点之间的距离 / private calculateLineDistance(point1:RunLatLng,point2:RunLatLng):number{ const EARTH_RADIUS=6378137.0; const lat1=this.rad(point1.latitude); const lat2=this.rad(point2.latitude); const a=lat1-lat2; const b=this.rad(point1.longitude)-this.rad(point2.longitude); const s=2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a/2),2)+ Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(b/2),2))); return s * EARTH_RADIUS; } / • 角度转弧度 / private rad(d:number):number{ return d * Math.PI/180.0; } / • 轨迹抽稀(同时处理源数据) • @param inPoints 待抽稀的轨迹list • @param sourcePoints 源数据list,与inPoints一一对应 • @param threshHold 阈值 • @returns 包含抽稀后的轨迹list和对应的源数据list / reducerVerticalThresholdWithSource(inPoints:RunLatLng[],sourcePoints:T[],threshHold:number=this.mThreshhold):PointSource{ if(!inPoints||!sourcePoints||inPoints.length<=2||inPoints.length!==sourcePoints.length){ return{points:inPoints||[],sources:sourcePoints||[]}; } const retPoints: RunLatLng[] = []; const retSources: T[] = []; for (let i = 0; i < inPoints.length; i++) { const pre = this.getLastLocation(retPoints); const cur = inPoints[i]; if (!pre || i === inPoints.length - 1) { retPoints.push(cur); retSources.push(sourcePoints[i]); continue; } const next = inPoints[i + 1]; const distance = this.calculateDistanceFromPoint(cur, pre, next); if (distance > threshHold) { retPoints.push(cur); retSources.push(sourcePoints[i]); } } return { points: retPoints, sources: retSources }; } }
二、绘制运动速度轨迹
有了上述两个工具类后,我们就可以开始绘制运动速度轨迹了。以下是绘制轨迹的完整流程:
1.准备轨迹点数据
首先,将原始轨迹点数据转换为RunLatLng
数组,以便后续处理:
// 将轨迹点转换为 RunLatLng 数组进行优化 let tempTrackPoints = this.record!.points.map(point => new RunLatLng(point.latitude, point.longitude));
2.优化轨迹点
使用PathSmoothTool
对轨迹点进行优化,包括去噪、滤波和抽稀,为保证源数据正确,我这里只做了抽稀:
// 轨迹优化 const pathSmoothTool = new PathSmoothTool(); const optimizedPoints = pathSmoothTool.reducerVerticalThresholdWithSource<RunPoint>(tempTrackPoints, this.record!.points);
3.转换为地图显示格式
将优化后的轨迹点转换为地图所需的LatLng
格式:
// 将优化后的点转换为 LatLng 数组用于地图显示 this.trackPoints = optimizedPoints.points.map(point => new LatLng(point.latitude, point.longitude));
4.获取轨迹颜色数组
使用PathGradientTool
根据速度为轨迹点生成颜色数组:
// 获取轨迹颜色数组 const colors = PathGradientTool.getPathColors(optimizedPoints.sources, 100);
5.绘制轨迹线
将轨迹点和颜色数组传递给地图组件,绘制轨迹线:
if (this.trackPoints.length > 0) { // 设置地图中心点为第一个点 this.mapController.setMapCenter({ lat: this.trackPoints[0].lat, lng: this.trackPoints[0].lng }, 15); // 创建轨迹线 this.polyline = new Polyline({ points: this.trackPoints, width: 5, join: SysEnum.LineJoinType.ROUND, cap: SysEnum.LineCapType.ROUND, isGradient: true, colorList: colors }); // 将轨迹线添加到地图上 this.mapController.addOverlay(this.polyline); }
三、代码核心点梳理
1.轨迹颜色计算
PathGradientTool
根据速度区间为轨迹点分配颜色。速度越快,颜色越接近青色;速度越慢,颜色越接近红色。颜色的渐变通过getGradient
方法实现。
2.轨迹优化
PathSmoothTool
通过卡尔曼滤波算法对轨迹点进行滤波,减少噪声和冗余点。轨迹抽稀通过垂直距离阈值实现,减少轨迹点数量,提高绘制性能。
3.地图绘制
使用百度地图组件(如Polyline
)绘制轨迹线,并通过colorList
实现颜色渐变效果。地图中心点设置为轨迹的起点,确保轨迹完整显示。
四、总结与展望
通过上述步骤,我们成功实现了运动速度轨迹的绘制。轨迹颜色反映了速度变化,优化后的轨迹更加平滑且性能更优。