题解 | #牛群的树形结构重建#
牛群的树形结构重建
https://www.nowcoder.com/practice/bcabc826e1664316b42797aff48e5153
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* };
*/
#include <sys/types.h>
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param inOrder int整型vector
* @param postOrder int整型vector
* @return TreeNode类
*/
TreeNode* build(vector<int>& inOrder, int l1, int r1, vector<int>& postOrder, int l2, int r2) {
if (l1 > r1) return nullptr;
TreeNode* root = new TreeNode(postOrder[r2]);
// 找到切分左右的位置
int index;
for (int i = l1; i <= r1; i++) {
if (inOrder[i] == postOrder[r2]) {
index = i;
break;
}
}
// 左树的元素索引位置为l1=>index-1,对应后续遍历的数组中,根据长度来确定起止位置l2=>l2+(index-l1-1),其中(index-l1-1)表示的是元素的个数,即为长度
root->left = build(inOrder, l1, index-1, postOrder, l2, l2+index-l1-1);
// 右树的起止位置为index+1=>r1,对应后续数组中的起止位置为l2+index-l1=>r2-1
root->right = build(inOrder, index+1, r1, postOrder, l2+index-l1, r2-1);
return root;
}
TreeNode* buildTree(vector<int>& inOrder, vector<int>& postOrder) {
// write code here
int l1 = 0, r1 = inOrder.size()-1;
int l2 = 0, r2 = postOrder.size()-1;
return build(inOrder, l1, r1, postOrder, l2, r2);
}
};

查看8道真题和解析