Day52:模型评估和选择

alt

在前面的章节中,我们介绍了机器学习的各个方面,包括数据预处理、特征工程以及各种机器学习算法。在本节中,我们将重点讨论如何评估和选择模型,以及在实际问题中如何进行模型选择。

1. 模型评估方法

在机器学习中,评估模型的性能是非常重要的,它能够帮助我们了解模型的预测能力和泛化能力。下面介绍几种常见的模型评估方法:

  1. 训练集和测试集划分:将数据集划分为训练集和测试集,使用训练集训练模型,然后使用测试集评估模型的性能。这种方法简单直接,但可能存在过拟合问题。

    from sklearn.model_selection import train_test_split
    
    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
  2. 交叉验证:将数据集划分为多个子集,每次使用其中一个子集作为测试集,其他子集作为训练集,然后多次重复训练和评估过程,最终得到综合性能评估结果。常见的交叉验证方法包括k折交叉验证和留一交叉验证。

    from sklearn.model_selection import cross_val_score
    
    # 进行k折交叉验证
    scores = cross_val_score(model, X, y, cv=5)
    
  3. 自助法:对于数据集较小的情况,可以使用自助法进行模型评估。自助法是通过有放回地从原始数据集中抽样生成一个与原始数据集大小相同的新数据集,并将未被抽中的样本作为测试集进行评估。

    from sklearn.utils import resample
    
    # 生成自助样本
    X_train_boot, y_train_boot = resample(X, y, random_state=42)
    
  4. 指标评估:根据具体的任务和问题,选择合适的评估指标来衡量模型性能。常见的分类任务评估指标包括准确率、精确率、召回率、F1值、混淆矩阵等,回归任务评估指标包括均方误差、平均绝对误差等。

    • 准确率(Accuracy):准确率是指模型预测正确的样本数量占总样本数量的比例。

      准确率 = (TP + TN) / (TP + TN + FP + FN)

    • 精确率(Precision):精确率是指在模型预测为正例的样本中,实际为正例的比例。

      精确率 = TP / (TP + FP)

    • 召回率(Recall):召回率是指在实际为正例的样本中,模型预测为正例的比例。

      召回率 = TP / (TP + FN)

    • F1值:F1值是精确率和召回率的调和平均值,用于综合考虑精确率和召回率。

      F1值 = 2 * (精确率 * 召回率) / (精确率 + 召回率)

    • 混淆矩阵:对于多分类问题,对角线上的元素表示正确预测的样本数,非对角线上的元素表示错误预测的样本数。

    其中,TP表示真正例(模型将正类正确地预测为正类),TN表示真反例(模型将负类正确地预测为负类),FP表示假正例(模型将负类错误地预测为正类),FN表示假反例(模型将正类错误地预测为负类)。

2. 模型选择

在实际问题中,选择合适的模型是非常重要的,它直接影响到模型的性能和泛化能力。以下是一些选择模型的常见准则

剩余60%内容,订阅专栏后可继续查看/也可单篇购买

大模型-AI小册 文章被收录于专栏

1. AI爱好者,爱搞事的 2. 想要掌握第二门语言的Javaer或者golanger 3. 决定考计算机领域研究生,给实验室搬砖的uu,强烈建议你花时间学完这个,后续搬砖比较猛 4. 任何对编程感兴趣的,且愿意掌握一门技能的人

全部评论

相关推荐

将不会再购买联想产品
Data_Seven:让他发一个拯救者过来 拯救一下你
投递联想等公司10个岗位
点赞 评论 收藏
分享
真tmd的恶心,1.面试开始先说我讲简历讲得不好,要怎样讲怎样讲,先讲背景,再讲技术,然后再讲提升多少多少,一顿说教。2.接着讲项目,我先把背景讲完,开始讲重点,面试官立即打断说讲一下重点,无语。3.接着聊到了项目的对比学习的正样本采样,说我正样本采样是错的,我解释了十几分钟,还是说我错的,我在上一家实习用这个方法能work,并经过市场的检验,并且是顶会论文的复现,再怎么不对也不可能是错的。4.面试官,说都没说面试结束就退出会议,把面试者晾在会议里面,丝毫不尊重面试者难受的点:1.一开始是讲得不好是欣然接受的,毕竟是学习。2.我按照面试官的要求,先讲背景,再讲技术。当我讲完背景再讲技术的时候(甚至已经开始蹦出了几个技术名词),凭什么打断我说讲重点,是不能听出人家重点开始了?这也能理解,每个人都有犯错,我也没放心上。3.我自己做过的项目,我了解得肯定比他多,他这样贬低我做过的项目,说我的工作是错误的,作为一个技术人员,我是完全不能接受的,因此我就和他解释,但无论怎么解释都说我错。凭什么,作为面试官自己不了解相关技术,别人用这个方式work,凭什么还认为这个方法是错的,不接受面试者的解释。4.这个无可厚非,作为面试官,不打招呼就退出会议,把面试者晾着,本身就是有问题。综上所述,我现在不觉得第一第二点也是我的问题,面试官有很大的问题,就是专门恶心人的,总结面试官说教,不尊重面试者,打击面试者,不接受好的面试者,技术一般的守旧固执分子。有这种人部门有这种人怎么发展啊。最后去查了一下,岗位关闭了。也有可能是招到人了来恶心人的,但是也很cs
牛客20646354...:招黑奴啊,算法工程师一天200?
点赞 评论 收藏
分享
熊大不大:微信也是华为旗下吧,我看我朋友也是华为工牌写wx
点赞 评论 收藏
分享
评论
2
3
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务