附答案 | 最强Python面试题之Python进阶题第一弹

写在之前

大家好呀,我是帅蛋。

这里是帅蛋的【最强Python面试题】系列,今天开始第二个专题【Python进阶题】的更新,面试八股文都在这里啦啦啦!

大家一定要记得点赞收藏呀!!!

下面是第一个专题【Python基础题】的全部 42 道题,题目排名不分先后,大家一定要牢牢掌握!


顺便提一句,我所有和面试相关的内容都会放在#帅蛋的面试空间# 中,大家可以关注下这个话题~

我会尽我最大的努力帮助到大家哒!!!

主要内容

这些面试题是我结合自己的经验整理的,主要就是下面这 5 个专题:

  • Python 基础面试题(已完成
  • Python 进阶
  • Python 后台开发
  • 爬虫
  • 机器学习

对每道面试题我都会附带详细的答案,有些我觉得重要的内容会详细讲解,虽然是面试八股文,我还是希望大家不是只“知其然”,更得“知其所以然”

关于更新频率,每天我会更新 10 道题左右,总共会有差不多 200 道。

无论是准备面试还是自己学习,这份面试题绝对值得你去看,去学习。

大家可以关注我,再关注我,使劲关注我,不要错过每天的更新~

以下是正文

Python 进阶面试题第一弹正式开始,大家一定要记得点赞收藏,一起加油!

1、Python 中类方法、类实例方法、静态方法有何区别?

类方法:是类对象的方法,在定义时需要在上方使用“@ classmethod”进行装饰,形参为 cls,表示类对象,类对象和实例对象都可调用

类实例方法:是类实例化对象的方法,只有实例对象可以调用,形参为 self,指代对象本身

静态方法:是一个任意函数,在其上方使用“@ staticmethod”进行装饰,可以用对象直接调用,静态方法实际上跟该类没有太大关系

2、Python 的内存管理机制及调优手段?

内存管理机制:引用计数、垃圾回收、内存池。

引用计数

引用计数是一种非常高效的内存管理手段, 当一个 Python 对象被引用时其引用计数增加 1, 当其不再被一个变量引用时则计数减 1. 当引用计数等于 0 时对象被删除。

垃圾回收

引用计数

引用计数也是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾收集技术。当 Python 的某
个对象的引用计数降为 0 时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如
某个新建对象,它被分配给某个引用,对象的引用计数变为 1。如果引用被删除,对象的引用计数为 0,
那么该对象就可以被垃圾回收。不过如果出现循环引用的话,引用计数机制就不再起有效的作用了

(2)标记清除

如果两个对象的引用计数都为 1,但是仅仅存在他们之间的循环引用,那么这两个对象都是需要被
回收的,也就是说,它们的引用计数虽然表现为非 0,但实际上有效的引用计数为 0。所以先将循环引
用摘掉,就会得出这两个对象的有效计数。

(3) 分代回收

从前面“标记-清除”这样的垃圾收集机制来看,这种垃圾收集机制所带来的额外操作实际上与系统
中总的内存块的数量是相关的,当需要回收的内存块越多时,垃圾检测带来的额外操作就越多,而垃圾
回收带来的额外操作就越少;反之,当需回收的内存块越少时,垃圾检测就将比垃圾回收带来更少的额
外操作。

举个例子:

当某些内存块 M 经过了 3 次垃圾收集的清洗之后还存活时,我们就将内存块 M 划到一个集合 A 中去,而新分配的内存都划分到集合 B 中去。当垃圾收集开始工作时,大多数情况都只对集合 B 进行垃圾回收,而对集合 A 进行垃圾回收要隔相当长一段时间后才进行,这就使得垃圾收集机制需要处理的内存少了,效率自然就提高了。在这个过程中,集合 B 中的某些内存块由于存活时间长而会被转移到集合 A 中,当然,集合 A 中实际上也存在一些垃圾,这些垃圾的回收会因为这种分代的机制而被延迟。

内存池

(1) Python 的内存机制呈现金字塔形状,-1,-2 层主要有操作系统进行操作

(2) 第 0 层是 C 中的 malloc,free 等内存分配和释放函数进行操作

(3)第 1 层和第 2 层是内存池,有 Python 的接口函数 PyMem_Malloc 函数实现,当对象小于
256K 时有该层直接分配内存

(4) 第 3 层是最上层,也就是我们对 Python 对象的直接操作

Python 在运行期间会大量地执行 malloc 和 free 的操作,频繁地在用户态和核心态之间进行切换,这将严重影响 Python 的执行效率。为了加速 Python 的执行效率,Python 引入了一个内存池机制,用于管理对小块内存的申请和释放。

Python 内部默认的小块内存与大块内存的分界点定在 256 个字节,当申请的内存小于 256 字节时,PyObject_Malloc 会在内存池中申请内存;当申请的内存大于 256 字节时,PyObject_Malloc 的行为将蜕化为 malloc 的行为。当然,通过修改 Python 源代码,我们可以改变这个默认值,从而改变 Python 的默认内存管理行为。

3、内存泄露是什么?如何避免?

由于疏忽或错误造成程序未能释放已经不再使用的内存的情况。

内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费。导致程序运行速度减慢甚至系统崩溃等严重后果。

del() 函数的对象间的循环引用是导致内存泄漏的主凶。

不使用一个对象时使用:del object 来删除一个对象的引用计数就可以有效防止内存泄漏问题。

通过 Python 扩展模块 gc 来查看不能回收的对象的详细信息。

可以通过 sys.getrefcount(obj) 来获取对象的引用计数,并根据返回值是否为 0 来判断是否内存
泄漏。

4、Python 函数调用的时候参数的传递方式是值传递还是引用传递?

Python 的参数传递有:位置参数、默认参数、可变参数、关键字参数。函数的传值到底是值传递还是引用传递,要分情况:

不可变参数用值传递

像整数和字符串这样的不可变对象,是通过拷贝进行传递的,因为你无论如何都不可能在原处改变不可变对象

可变参数是引用传递的

比如像列表,字典这样的对象是通过引用传递、和 C 语言里面的用指针传递数组很相似,可变对象能在函数内部改变。

5、对缺省参数的理解?

缺省参数指在调用函数的时候没有传入参数的情况下,调用默认的参数,在调用函数的同时赋值时,所传入的参数会替代默认参数。

*args 是不定长参数,他可以表示输入参数是不确定的,可以是任意多个。

**kwargs 是关键字参数,赋值的时候是以键 = 值的方式,参数是可以任意多对在定义函数的时候
不确定会有多少参数会传入时,就可以使用两个参数。

补充

*args

如果你之前学过 C 或者 C++,看到星号的第一反应可能会认为这个与指针相关,然后就开始方了,其实放宽心,Python 中是没有指针这个概念的。

在 Python 中我们使用星号收集位置参数,请看下面的例子:

>>> def fun(x,*args):
...    print(x)
...    res = x
...    print(args)
...    for i in args:
...            res += i
...    return res
...
>>> print(fun(1,2,3,4,5,6))

上述例子中,函数的参数有两个,但是我们在输出的时候赋给函数的参数个数不仅仅是两个,让我们来运行这个代码,得到如下的结果:

1
(2, 3, 4, 5, 6)
21

从上面我们可以看出,参数 x 得到的值是 1,参数 args 得到的是一个元组 (2,3,4,5,6) ,由此我们可以得出,如果输入的参数个数不确定,其它的参数全部通过 *args 以元组的方式由 arg 收集起来。

为了更能明显的看出 *args,我们下面用一个简单的函数来表示:

>>> def print_args(*args):
...    print(args)
...

接下来我传入不同的值,通过参数 *args 得到的结果我们来看一下:

>>> print_args(1,2,3)
(1, 2, 3)
>>> print_args('abc','def','ghi')
('abc', 'def', 'ghi')
>>> print_args('abc',['a','b','c'],1,2,3)
('abc', ['a', 'b', 'c'], 1, 2, 3)

不管是什么,都可以一股脑的塞进元组里,即使只有一个值,也是用元组收集,所以还记得在元组里一个元素的时候的形式吗?元组中如果只有一个元素,该元素的后面要有一个逗号。

那么如果不给 *args 传值呢?

>>> def print_args(*args):
...    print(args)
...
>>> print_args()
()

答案就是这时候 *args 收集到的是一个空的元组。

最后提醒一点的是,当使用星号的时候,不一定要把元组参数命名为 args,但这个是 Python 中的一个常见做法。

**kwargs

使用两个星号是收集关键字参数,可以将参数收集到一个字典中,参数的名字是字典的 “键”,对应的参数的值是字典的 “值”。请看下面的例子:

>>> def print_kwargs(**kwargs):
...    print(kwargs)
...
>>> print_kwargs(a = 'lee',b = 'sir',c = 'man')
{'a': 'lee', 'b': 'sir', 'c': 'man'}

由例子可以看出,在函数内部,kwargs 是一个字典。

看到这的时候,可能聪明的你会想,参数不是具有不确定型吗?如何知道参数到底会用什么样的方式传值?其实这个很好办,把 args 和 *kwargs 综合起来就好了啊,请看下面的操作:

>>> def print_all(x,y,*args,**kwargs):
...    print(x)
...    print(y)
...    print(args)
...    print(kwargs)
...
>>> print_all('lee',1234)
lee
1234
()
{}
>>> print_all('lee',1,2,3,4,5)
lee
1
(2, 3, 4, 5)
{}
>>> print_all('lee',1,2,3,4,5,like = 'python')
lee
1
(2, 3, 4, 5)
{'like': 'python'}

如此这般,我们就可以应对各种各样奇葩无聊的参数请求了。当然在这还是要说的是,这里的关键字参数命名不一定要是 kwargs,但这个是通常做法。

6、为什么函数名字可以当做参数用?

Python 中一切皆对象,函数名是函数在内存中的空间,也是一个对象。

7、Python 中 pass 语句的作用是什么?

在编写代码时只写框架思路,具体实现还未编写就可以用 pass 进行占位,使程序不报错,不会进行任何操作。

8、面向对象中super的作用?

super() 函数是用于调用父类(超类)的一个方法。

super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序(MRO)、重复调用(钻石继承)等种种问题。

MRO 就是类的方法解析顺序表, 其实也就是继承父类方法时的顺序表。

作用:

  • 根据 mro 的顺序执行方法

  • 主动执行 Base 类的方法

9、是否使用过functools中的函数?其作用是什么?

Python的functools模块用以为可调用对象(callable objects)定义高阶函数或操作。

简单地说,就是基于已有的函数定义新的函数。

所谓高阶函数,就是以函数作为输入参数,返回也是函数。

10、json序列化时,默认遇到中文会转换成unicode,如果想要保留中文怎么办?

import json

a = json.dumps({"ddf": "你好"}, ensure_ascii=False)
print(a)
# {"ddf": "你好"}

以上就是今天的内容,我是帅蛋,我们明天见~

❤️ 欢迎关注我,有问题,找帅蛋,我最看不得别人迷茫!

❤️ 如果你觉得有帮助,希望爱学习的你不要吝啬三连击哟[点赞 + 收藏 + 评论]~

还有小小公众号 【编程文青李狗蛋】,聊聊迷茫吹吹牛皮~

#秋招##面试八股文##帅蛋的面试空间##Python##python面试#
全部评论
Python 最强面试题第二个专题来啦!学起来~
2 回复 分享
发布于 2022-07-22 13:57
这么好的文章,给我冲
1 回复 分享
发布于 2022-07-22 17:42
博主,我放我自己的博客里了噢。这可太好用了 呜呜呜
点赞 回复 分享
发布于 2023-03-26 12:07 香港
催更催更😘
点赞 回复 分享
发布于 2022-07-24 16:31
🐮
点赞 回复 分享
发布于 2022-07-23 09:29
点赞 回复 分享
发布于 2022-07-22 22:04
厉害
点赞 回复 分享
发布于 2022-07-22 17:44
点赞 回复 分享
发布于 2022-07-22 17:02

相关推荐

07-05 14:06
已编辑
门头沟学院 Java
bg本硕末2现状:杭州某金融科技公司:已实习一个多月,做APP 开发,刚接到转正考核任务(月底答辩)。组内竞争激烈(20 + 实习生留 8 人),对手有浙大硕、海归。工作强度大,朝九晚九大小周。团队氛围还可以,但技术前景被唱衰(安卓开发饱和,小程序冲击大)。杭州银行:实习到 8 月底,现场答辩通过可直接转正。但地方城商行稳定性存疑(听说可能裁员)。工行软开(杭州):四大行平台,优秀实习生可直通秋招笔试(优秀实习生笔试和面试都要 感觉跟秋招没区别啊)。看网上风评说技术偏传统。实习时间 7-8 月,与杭州银行时间重叠。纠结点:高薪 vs 高风险:杭州某金融科技公司薪资诱人但转正率低,且技术赛道可能走下坡路。稳定 vs 成长:杭州银行转正明确但稳定性存疑,工行平台大但技术发展受限。情感 vs 现实:杭州某金融科技公司团队氛围好,但高强度可能透支身体;银行实习需放弃现有团队,心理压力大。求建议:冲杭州某金融科技公司的高薪和技术经验,还是选银行求稳?杭州银行的稳定性风险是否可控?工行的 “优秀实习生” 含金量如何?安卓开发未来出路在哪?银行技术岗是否真的学不到东西?时间冲突下,如何高效权衡三方选择?PS:目前在杭州某金融科技公司刚接转正任务,突然收到银行 offer,有点慌… 求前辈们指点迷津!💔
投递工商银行等公司7个岗位
点赞 评论 收藏
分享
1. 什么是MCP参考面试回答:MCP模型上下文协议)是为大型语言模型提供的一个统一标准化接口、让AI能够无缝连接各种外部数据源和工具。可以将它比作AI世界的USB接口—只要遵循这个协议标准、任何数据源或工具都能与语言模型实现即插即用比如说传统的AI只能依赖预训练的静态知识、无法获取实时数据。而通过MCP,模型可以动态访问最新信息、比如查询搜索引擎、读取本地文件、调用第三方API、甚至直接操作各种工具库。比如说可以访问Github、IDEA这个协议最大的价值是标准化、它是MCP的核心价值 - 你不需要为每个AI模型和每个工具之间的连接编写专门的代码、只要双方都支持MCP协议、它们就能自动"对话"。这大大简化了系统集成、降低了开发成本、也提高了系统的可扩展性总结就是 MCP 创建一个通用标准、使 AI 应用程序的开发和集成变得更加简单和统一2. 大模型输出出现重复和幻觉如何解决参考面试回答:在大模型生成内容时、出现重复和幻觉是两个常见的问题。重复指的是模型在生成文本时出现内容重复的现象、而幻觉则是指模型生成了看似合理但实际上不真实或不准确的信息。为了解决这两个问题、可以通过微调(fine-tuning)的方法进行优化为了解决这些问题、首先微调是非常有效的手段。首先可以确保用于训练的数据质量、要高质量的真实的信息。我们可以减少模型学到错误的信息。特别是领域特定的微调、能帮助模型更准确地生成内容,避免在特定领域(比如医疗、金融)中产生幻觉。此外在训练过程中引入惩罚机制、比如对模型生成重复或不准确内容进行惩罚、也能够引导模型生成更为多样和真实的内容。另一个有效的策略是使用参数高效微调(PEFT)、通过像LoRA这样的技术、在不改变模型主体结构的情况下调整部分参数、从而提高微调效率并减少幻觉的产生。同时强化学习与人类反馈(RLHF)也是一种非常有用的方法、结合人类的评价、模型可以在生成内容时更符合实际世界的逻辑,降低幻觉的风险。最后检索增强生成(RAG)技术也能够显著提高模型输出的准确性、通过在生成过程中引入外部知识库、确保模型生成的信息更为真实和可靠。总的来说:通过微调、引入惩罚机制、领域特定训练和强化学习等方法、可以有效减少大模型的重复和幻觉问题3. 什么是RAG?流程是什么?面试参考回答:RAG就是结合信息检索和生成式模型的技术。主要流程包括两个核心环节:检索:基于用户的输入、从外部知识库(如数据库、文档、网页)检索与问题相关的信息。通常使用向量化表示和向量数据库进行语义匹配。将知识库中的文档进行预处理、分块、清洗并转换为向量表示、存储在向量数据库中。常用的如 Faiss、Milvus等向量数据库存储所有文档向量。用户提问后、对问题进行向量化、并在数据库中执行最近邻搜索、找出语义最相近的 N 条内容然后就是增强:也可以说是构建 Prompt1.将检索到的信息作为上下文、输入给生成模型(如 GPT)。2.相比纯生成模型、RAG 能引用真实数据、减少幻觉(胡编乱造)最后就是由将增强后的上下文输入到大型语言模型、综合已有上下文生成最终生成最终的回答或内容。一句话总结: RAG = 向量搜索引擎 + 大模型、让 AI 回答更靠谱、减少幻觉4. RAG的详细完整的工作流程参考面试回答流程:RAG(检索增强生成)的完整流程可分为5个核心阶段:1. 用户提问2. 数据准备:清洗文档、分块处理(如PDF转文本切片)2. 向量化:使用嵌入模型(如BERT、BGE)将文本转为向量。也就是Embedding 向量化3. 索引存储:向量存入数据库(如Milvus、Faiss、Elasticsearch)。4. 检索增强:用户提问向量化后检索相关文档。也就是构建 Prompt (问题 + 检索内容)5. 生成答案:将检索结果与问题组合输入大模型生成回答。5. 在 RAG 中的 Embedding 嵌入是什么参考面试回答:Embedding是RAG系统的核心组件、Embedding(嵌入)技术本质上是将文本、图像等非结构化数据转换为高维向量的过程。在实际应用中Embedding解决了传统关键词检索的局限性。比如用户询问如何煮奶茶时、传统检索可能无法找到包含'奶茶制作步骤'的文档、因为它们字面上不匹配。而通过Embedding、系统能够理解这两个表达在语义上的相似性、从而返回相关内容。Embedding的工作原理是通过深度学习模型(如BERT、Sentence-Transformers等)将文本映射到768维或更高的向量空间。在RAG系统中、Embedding的核心价值在于建立查询和文档之间的语义桥梁。当系统收到用户问题后、会将其转化为向量、然后在预先索引的文档向量库中寻找最相似的内容、无论它们在字面表达上是否匹配。这种基于语义的检索方式大幅提升了信息获取的准确性和完整性、为生成模型提供了更高质量的上下文信息,从而产生更精准的回答6. 什么是LangChain参考面试回答:LangChain 是一个开源框架、专为快速构建复杂的大语言模型应用而设计。简单来说就是它集成和内置了很多我们开发 AI 大模型应用需要的东西、如内置文档加载器、向量数据库、HTTP API 封装、云服务适配器等、让咱们开箱即用、有点像咱们 Java 届的 Spring。它最大的特点是把模型调用、提示词管理、工具使用、记忆管理这些能力模块化了、让开发者可以很方便地把大模型和数据库、搜索引擎、API服务等结合起来,用链式结构组织复杂任务。主要支持复杂任务编排:通过 Chains(链)和 Agents(代理)将多个LLM调用和工具操作组合成工作流以及实现上下文管理Memory(记忆):通过 Memory 组件(如对话历史缓存、实体关系跟踪)实现长对话连贯性。6. 什么是向量数据库参考面试回答:我的理解是:向量数据库它可以将非结构化数据(如文本、图片、音频等)转换成高维向量的形式进行存储、通过向量数据库预先存储结构化段、实时检索最相关的 Top-K 内容作为上下文输入、并通过高效的相似性搜索算法、快速找到与目标向量最接近的数据项。传统数据库采用存储数据、主要用于精确匹配查询、常用的检索方式就是精确匹配、索引结构有像B+树或者倒排索引的结构。而向量数据库针对高维向量数据优化、支持近似最近邻(ANN)搜索算法、更适合语义相似性搜索。可以理解为TopN系列、检索TopK相关内容作为上下文输入。向量数据库预先向量化并建立索引(如 HNSW、IVF),实现亚秒级检索。代表性的向量数据库就是Milvus:一个开源的向量数据库系统8. 向量数据库的核心原理是什么?核心技术是什么参考面试回答:向量数据库的核心原理是通过将高维数据(如图像、文本)转换为多维向量、并基于相似性度量(如余弦相似度、欧氏距离),利用高效的索引结构和近似最近邻(ANN)算法、快速检索与目标最相似的向量结果。这一过程可概括为三个关键步骤:首先是向量化:我们通过嵌入模型将非结构化数据映射为稠密向量、比如用BERT处理文本、ResNet处理图像、或CLIP处理多模态数据。这些模型能捕获数据的语义或特征信息、通常生成128到2048维的向量其次是索引构建:为了高效检索、我们会采用分层导航小世界图(HNSW)等结构预处理向量。HNSW能将搜索复杂度降至对数级O(log N)。同时我们还会利用乘积量化(PQ)来压缩向量、减少内存占用、以及通过倒排索引(IVF)缩小搜索范围。最后是近似搜索:在实际应用中我们允许一定误差来提升速度。ANN算法会在准确性和效率间寻找平衡点、确保在毫秒级延迟内返回Top-K相似结果、同时保持95%以上的召回率。总的来说就四个核心层:向量化引擎->索引结构 ->相似度计算->搜索原始数据 → 向量化 → 索引构建(HNSW/PQ/LSH) → 输入查询向量 → ANN近似搜索 → 返回Top-K结果(格式明天再改吧___发帖于2025.6.25 00:47)
everll:更多见《牛客面经八股》https://www.nowcoder.com/exam/interview
点赞 评论 收藏
分享
评论
41
161
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务