简单模板
并查集
int ht[N];
int fa[N];
int n; // point numers
void init_set() {
for (int i = 1; i <= n; ++i) fa[i] = i, ht[i] = 0;
}
int Find(int x) {
if (x != fa[x]) fa[x] = Find(fa[x]); //路径压缩
return fa[x];
}
int find_set_circle(int x) {
int r = x;
while (fa[r] != r) r = fa[r]; //找到根节点
for (int i = x, j; i != r; i = j)
j = fa[i], fa[i] = r; //把路径上的元素的集改为根节点
return r;
}
void union_set(int x, int y) {
x = Find(x);
y = Find(y);
if (ht[x] == ht[y])
ht[x] = ht[x] + 1, fa[y] = x;
else if (ht[x] < ht[y])
fa[x] = y;
else
fa[y] = x;
} 管理节点数量,无按秩归并
//hdu1856
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 10000005;
int sum[maxn]; //集合总数
int ufs[maxn]; //父节点
void Init(int n) { //初始化
for (int i = 1; i <= n; i++) {
ufs[i] = i;
sum[i] = 1;
}
}
int Find(int a) { //获得a的根节点。路径压缩
if (ufs[a] != a) { //没找到根节点
int tmp = ufs[a];
ufs[a] = Find(ufs[a]);
}
return ufs[a];
}
void Merge(int a, int b) { //合并a和b的集合
int x = Find(a);
int y = Find(b);
if (x != y) {
ufs[x] = y;
sum[y] += sum[x];
}
}
int main() {
int t, a, b;
while (~scanf("%d", &t)) {
Init(maxn);
while (t--) {
scanf("%d%d", &a, &b);
Merge(a, b);
}
int ans = -1;
for (int i = 1; i <= maxn; ++i) ans = max(ans, sum[i]);
printf("%d\n",ans);
}
return 0;
} 食物链(关系并查集)
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 50010;
struct node {
int pre; //父节点
int relation; //与父节点之间的关系
} p[N];
/*
在这里,向量指的是“偏移量”,表示的是子节点与父节点之间的关系。
0表示与父节点属于同一种族;
1表示被父节点吃;
2表示吃父节点。
*/
int find(int x) { //查找根结点
int temp;
if (x == p[x].pre) return x;
temp = p[x].pre; //路径压缩
p[x].pre = find(temp);
p[x].relation = (p[x].relation + p[temp].relation) % 3; //关系域更新
return p[x].pre; //根结点
}
int main() {
int n, k;
int sum = 0; //假话数量
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) { //初始化
p[i].pre = i;
p[i].relation = 0;
}
int ope, a, b;
for (int i = 1; i <= k; ++i) {
scanf("%d%d%d", &ope, &a, &b);
if (a > n || b > n || ope == 2 && a == b) sum++;
else {
int root1 = find(a);
int root2 = find(b);
if (root1 != root2) { // 合并
p[root2].pre = root1;
// 此时 rootx->rooty = rootx->x + x->y + y->rooty
p[root2].relation = (3 + p[a].relation + (ope - 1) - p[b].relation) % 3;
} else {
//验证x->y之间的偏移量是否与题中给出的d-1一致
if (ope == 1 && p[a].relation != p[b].relation) sum++;
else if (ope == 2 && (3 - p[a].relation + p[b].relation) % 3 != ope - 1)
sum++;
}
}
}
printf("%d\n", sum);
return 0;
} KMP
//模板
void GetNextval(string p, int next[]) {
int pLen = p.length()-1;
next[0] = -1;
for (int i = 0, j = -1; i < pLen;) {
if (j == -1 || p[i] == p[j]) {
if (p[++i] != p[++j]) next[i] = j;
else next[i] = next[j];
} else j = next[j];
}
} 区间DP
题意
n个点在数轴上排列,从其中一个点出发。每个点都有要求的最晚到达时间,问能否全部准时到达,如果能,给出完成时间。
分析
题目给出的n个景点是按照位置信息升序排列的。
把起始点,即t为0的点设为k,所有的点分成了两部分:k点左边的点和k点右边的点。
我们用一个数组dp[i][j][f]表示完成左边i个点右边j个点的最少所需时间,f==0时表示在左边结束,f==1时表示在右边结束。
看着数轴,考虑在左边结束的情况,即dp[i][j][0]:
- 上一个落脚点是左边(从右往左数,下同)第i-1个点,那么就是dp[i-1][j][0]再加上两点之间所需要消耗的时间即可。
- 上一个落脚点是右边第j个点.
所以
同理
然后逐个比对,遇到不符合的情况直接退出即可。
solution
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e3 + 5;
int dp[N][N][2];
int d[N], t[N];
int main() {
int n,k;
cin >> n;
for (int i = 1; i <= n; i++) cin >> d[i];
for (int i = 1; i <= n; i++) cin >> t[i];
for (int i = 1; i <= n; i++) if (t[i] == 0) k = i;
fill(**dp, **dp+sizeof(dp)/4, INF);
dp[0][0][1] = dp[0][0][0] = 0;
for (int i = 0; i <= k - 1; i++)
for (int j = 0; j <= n - k; j++) {
if (i) dp[i][j][0] = min(dp[i - 1][j][0] - d[k - i] + d[k - i + 1], dp[i - 1][j][1] + d[j + k] - d[k - i]);
if (j) dp[i][j][1] = min(dp[i][j - 1][1] + d[j + k] - d[j - 1 + k], dp[i][j - 1][0] + d[j + k] - d[k - i]);
if (dp[i][j][0] > t[k - i] && dp[i][j][1] > t[j + k]) { cout << -1; return 0; }
if (dp[i][j][0] > t[k - i]) dp[i][j][0] = INF;
if (dp[i][j][1] > t[k + j]) dp[i][j][1] = INF;
}
cout << min(dp[k - 1][n - k][0], dp[k - 1][n - k][1]);
return 0;
} 杜教筛
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define pb push_back
typedef long long ll;
#define SZ(x) ((ll)(x).size())
typedef vector<ll> VI;
typedef pair<ll, ll> PII;
const ll mod = 998244353;
ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1)res = res * a % mod; a = a * a % mod; }return res; }
// head
ll _, n;
namespace linear_seq {
const ll N = 10010;
ll res[N], base[N], _c[N], _md[N];
vector<ll> Md;
void mul(ll* a, ll* b, ll k) {
rep(i, 0, k + k) _c[i] = 0;
rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (ll i = k + k - 1; i >= k; i--) if (_c[i])
rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, 0, k) a[i] = _c[i];
}
ll solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans = 0, pnt = 0;
ll k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1;
Md.clear();
rep(i, 0, k) if (_md[i] != 0) Md.push_back(i);
rep(i, 0, k) res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n) pnt++;
for (ll p = pnt; p >= 0; p--) {
mul(res, res, k);
if ((n >> p) & 1) {
for (ll i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0;
rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
if (ans < 0) ans += mod;
return ans;
}
VI BM(VI s) {
VI C(1, 1), B(1, 1);
ll L = 0, m = 1, b = 1;
rep(n, 0, SZ(s)) {
ll d = 0;
rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == 0) ++m;
else if (2 * L <= n) {
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L; B = T; b = d; m = 1;
}
else {
ll c = mod - d * powmod(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m) C.pb(0);
rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
ll gao(VI a, ll n) {
VI c = BM(a);
c.erase(c.begin());
rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
};
inline ll read() {
ll s = 0, w = 1; char ch = getchar();
while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); }
while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();
return s * w;
}
ll f[10005];
int main() {
ll n = read(), k = read();
f[1] = 1, f[2] = 1;
for (int i = 3; i <= 10000; ++i)
f[i] = (f[i - 1] + f[i - 2]) % mod;
VI a;
ll x = 0;
for (int i = 1; i <= 10000; ++i) {
x = (x + powmod(i, k) * f[i] % mod) % mod;
a.push_back(x);
}
printf("%lld\n", linear_seq::gao(a, n - 1));
} 