POJ 2253 Frogger【最短路变形/最小生成树的最大权/最小瓶颈树/A到B多条路径中的最小的最长边】

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4

3
17 4
19 4
18 5

0

Sample Output

Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

 【Floyd】

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 50000+20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
double dp[500][500];
int t,n;
int x[500],y[500];
void floyd()
{
    for(int k=1;k<=n;k++)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j] = min(dp[i][j], max(dp[i][k],dp[j][k]));
            }
        }
    }
}
int main()
{
    int ca=1;
    while(~scanf("%d",&n),n)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&x[i],&y[i]);
        }
        rep(i,1,n) rep(j,i+1,n)
            dp[i][j]=dp[j][i]=sqrt(double(sqr(x[i]-x[j]))+double(sqr(y[i]-y[j])));
        floyd();
        printf("Scenario #%d\nFrog Distance = %.3f\n\n",ca++,dp[1][2]);
    }
}
/*
【题意】
有两只青蛙和若干块石头,现在已知这些东西的坐标,两只青蛙A坐标和青蛙B坐标是第一个和第二个坐标,现在A青蛙想要到B青蛙那里去,并且A青蛙可以借助任意石头的跳跃,而从A到B有若干通路,问从A到B的所有通路上的最大边,比如有两条通路  1(4)5 (3)2 代表1到5之间的边为4,  5到2之间的边为3,那么该条通路跳跃范围(两块石头之间的最大距离)为 4,  另一条通路 1(6) 4(1) 2 ,该条通路的跳跃范围为6, 两条通路的跳跃范围分别是 4 ,6,我们要求的就是最小的那一个跳跃范围,即4

【类型】
最短路/最大边最小的最小瓶颈生成树

【分析】
最短路松弛的时候条件变一下就可以了。

【时间复杂度&&优化】

【trick】

【数据】

*/
A到B多条路径中的最长边中的最短距离

 【Dij矩阵版】

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 50000+20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
double dp[500][500],dis[maxn];
int t,n;
int x[500],y[500],vis[maxn];
/*
2
0 0
3 4

3
17 4
19 4
18 5

0

*/
void dij(int s)
{
    ms(vis,0);
    rep(i,1,n) dis[i]=INF;
    dis[s]=0;

    rep(i,1,n)
    {
        int Min=INF,k;
        rep(j,1,n)
            if(!vis[j] && dis[j]<Min)
                Min=dis[k=j];
        vis[k]=1;
        rep(j,1,n)
            dis[j]=min(dis[j],max(dis[k],dp[k][j]));
    }

}
int main()
{
    int ca=1;
    while(~scanf("%d",&n),n)
    {
        ms(dp,0);
        for(int i=1;i<=n;i++)
            scanf("%d%d",&x[i],&y[i]);
        rep(i,1,n) rep(j,i+1,n)
            dp[i][j]=dp[j][i]=sqrt(double(sqr(x[i]-x[j]))+double(sqr(y[i]-y[j])));
        dij(1);
        printf("Scenario #%d\nFrog Distance = %.3f\n\n",ca++,dis[2]);
    }
}
/*
【题意】
有两只青蛙和若干块石头,现在已知这些东西的坐标,两只青蛙A坐标和青蛙B坐标是第一个和第二个坐标,现在A青蛙想要到B青蛙那里去,并且A青蛙可以借助任意石头的跳跃,而从A到B有若干通路,问从A到B的所有通路上的最大边,比如有两条通路  1(4)5 (3)2 代表1到5之间的边为4,  5到2之间的边为3,那么该条通路跳跃范围(两块石头之间的最大距离)为 4,  另一条通路 1(6) 4(1) 2 ,该条通路的跳跃范围为6, 两条通路的跳跃范围分别是 4 ,6,我们要求的就是最小的那一个跳跃范围,即4

【类型】
最短路/最大边最小的最小瓶颈生成树

【分析】
最短路松弛的时候条件变一下就可以了。

【时间复杂度&&优化】

【trick】

【数据】

*/
dij算法

【kruskal】

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5+20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
double x[maxn],y[maxn];
double dis[maxn];
int t,n,m,u,v,w;
int vis[maxn],fa[maxn];
int ca;
struct node
{
    int u,v;
    double w;
//    bool operator < (const node &x) const{
//        return w < x.w; //最小生成树 权值小到大
//    }
}e[maxn<<1];
bool cmp(node a,node b)
{
    return a.w<b.w;
}
int Find(int x)
{
    return x==fa[x]?x:Find(fa[x]);
}
double get(int i,int j)
{
    return sqrt(double(sqr(x[i]-x[j]))+double(sqr(y[i]-y[j])));
}
int main()
{
    ca=1;
    while(~scanf("%d",&n),n) //n个点
    {
        m=0;

        for(int i=1;i<=n;i++) fa[i]=i;
        for(int i=1;i<=n;i++)
            scanf("%lf%lf",&x[i],&y[i]);
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
            {
                e[m].u=i;
                e[m].v=j;
                e[m++].w=get(i,j);
            }
        }
        double ans=0.0;
        sort(e,e+m,cmp); //m条边
        for(int i=0;i<m;i++)
        {
            int fx=Find(e[i].u);
            int fy=Find(e[i].v);
            if(fx!=fy)
            {
                fa[fx]=fy;
                ans = e[i].w;
                if(Find(1)==Find(2))
                   break;
            }
        }
        printf("Scenario #%d\nFrog Distance = %.3f\n\n",ca++,ans);
    }
}
/*
2
0 0
3 4

3
17 4
19 4
18 5

0
Sample Output
Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414
【题意】

【类型】
kruskal

【分析】
在kruskal的时候不断地添加边,直到第一个点和第二个点被添加在一起
把边值排序,然后依次加入加入最小边,起点和终点一旦连通,那么解就是这条边了

【时间复杂度&&优化】

【trick】

【数据】

*/

/*
每次选取不成环的最小边,
直到这棵树选取了通往终点的最小边,那么最后选择的这条边必然是在树中最大的一条边,而且在其余的边中是最小的。
你不会找到比这条边小的最大距离,
因为比它小的最小距离都在树里了,而未选取该边前树中不包含终点,
即比该边小的所有边无法到达终点。即改边满足的两个条件,最小,
而且是起点到终点的最大距离
*/
kruskal

 

全部评论

相关推荐

来,说点可能被同行“骂”的大实话。🙊当初接数字马力Offer时,朋友都说:“蚂蚁的“内包”公司?你想清楚啊!”但入职快一年后的今天,我反而对他有了不一样的看法!🔹&nbsp;是偏见?还是信息差!之前没入职之前外面都在说什么岗位低人一等这类。实际上:这种情况不可至否,不能保证每个团队都是其乐融融。但我在的部门以及我了解的周边同事都还是十分好相处的~和蚂蚁师兄师姐之间也经常开一些小玩笑。总之:身份是蚂蚁公司给的,地位是自己挣的(一个傲娇女孩的自述)。🔹&nbsp;待遇?玩的就是真实!试用期工资全额发!六点下班跑得快(早9晚6或者早10晚7,动态打卡),公积金顶格交。别听那些画饼的,到手的钱和下班的时间才是真的(都是牛马何必难为牛马)。🔹&nbsp;能不能学到技术?来了就“后悔”!我们拥有权限直通蚂蚁知识库,技术栈多到学不完。说“学不到东西”的人,来了可能后悔——后悔来晚了(哈哈哈哈,可以不学但是不能没有)!💥&nbsp;内推地址:https://app.mokahr.com/su/ueoyhg❗我的内推码:NTA6Nvs走我的内推,可以直达业务部门,面试流程更快速,进度可查!今天新放HC,之前挂过也能再战!秋招已经正式开始啦~机会就摆在这,敢不敢来试一试呢?(和我一样,做个勇敢的女孩)
下午吃泡馍:数字马力的薪资一般哇,5年经验的java/测试就给人一万出头,而且刚入职第三天就让人出差,而且是出半年
帮你内推|数字马力 校招
点赞 评论 收藏
分享
青春运维少年不会梦到...:实习大王
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务