飞猪春招一面

40min
1.拷打实习 慢sql优化这些
2.spring bean的生命周期  如何自定义bean的加载这种
3.redis常见数据类型
4.zest跳表这些
5.手撕  有效括号生成
还有一些别的八股忘了  基本都答出来了
手撕完面试官早早下线了 就反问一个  感觉是kpi
全部评论
有后续吗
点赞 回复 分享
发布于 05-13 01:42 浙江
是住宿部门吗
点赞 回复 分享
发布于 04-30 22:25 广东

相关推荐

✴️算法面试中遇到一道实战场景题:在大模型训练中使用GRPO,训到一半 reward 就很容易突然掉下来的原因?GRPO 出现这个问题,需要详细了解强化学习(RL)的基本迭代架构,即 Actor-Critic 架构。知行互动(AC)架构为什么要有 Critic 呢?这就涉及强化学习的算法稳定性问题。与监督学习(SL)相比,RL 实际上是很难稳定的一类训练机制。💣大致的原因如下:RL 本身是处理动态系统的最优控制问题,而 SL 是处理一个静态优化问题。动,就比静更难处理。加上 RL 的数据非稳态,Env-agent 交互机制的数据采集量少,这使得梯度计算的方差更大,方差一大就容易偏离预期目标,算法就容易跑飞了。主流的强化学习算法是怎么解决这一问题的呢?加上 Critic,使用 State-value function 或者 Action-value function 稳定策略梯度的计算过程。更高级一些的算法是采用 Advantage Function,也就是加上了 Baseline,增加梯度计算的稳定性。这是 AC 算法总是优于 REINFORCE 算法的原因之一。✅然而 GRPO 并没有 Critic 部分,原因比较简单,因为 GRPO 是用于训练大模型(1000 亿级别的参数规模),若是使用“知行互动”架构的话,等于需要存储两个大模型。Critic Network和 Actor Network,对存储要求极高。怎么节约存储呢?把 Critic Network 去掉,替换为在线估计 Advantage function 的算法,采用了“时间(算力)”换“空间(存储)”的做法。这就是 GRPO 的设计思想。与之对比,OpenAI 提出的 PPO 算法(也是 GRPO 的基础算法),它的值函数通常是一个与策略模型大小相当的模型,这带来了显著的内存和计算负担。考虑到 OpenAI 并不缺算力资源,不缺存储资源,即使 PPO 算法设计的如此糟糕,照样用的风生水起。🤳回到最初的话题,从原理上看 GRPO 并非完美,与 PPO 相比实际上处于是半斤八两的水平,算法设计存在“稳定性”缺陷,但是为什么 DeepSeek 还能用的比较好呢?因为 DeepSeek 的数据足够多,多到可以“完美”地避开 GRPO 的稳定性缺陷。每次的 Policy Gradient 计算,只要 Batch 数据足够多,就能有效降低 Policy Gradient 的方差,就能获得比较稳定的迭代。当每次使用的数据批量比较小的时候,它的稳定性缺陷将是致命的。这类规模的策略训练,建议优先选择带有 Critic 的强化学习算法。🌟如果大家想了解高质量的项目辅导以及提升面试能力,欢迎后台咨询。    
点赞 评论 收藏
分享
评论
3
4
分享

创作者周榜

更多
牛客网
牛客企业服务