9.09腾讯混元应用组一面

1. 介绍一下风格迁移论文做法
2. 如何对风格和内容做解纠缠(instantstyle)
3. 但是现在都是clip倒数第二层,clip只在倒数第一层做了文图对齐,你会怎么进行解纠缠/对齐(取很多相似的图像做few-shot的IPA平均,这样子当个数够多时候他们的平均就只代表风格,淡化内容;做风格 风格话图像 内容图像三元组显示训练) 现在想想对齐也可以拿QK得到attention map Q是text K是图像

现在基于dit的架构很少有这样子的探索,如果是你的话你会怎么做?(现在想想应该采用B-LORA的思路去探索)

4. 想要语义风格迁移,比如对应帽子 对应裙子该怎么做?(无他 attention就是语义相似性)
5. 风格是怎么定义的?(gram矩阵 均值方差)
6. 换另外一个面试官问虚拟试衣的做法,我负责的改进,有没有show case
7. 针对复杂背景虚拟试衣怎么做? 你这个项目是最重要上线吗? 现在的inpainting虚拟试衣文本控制能力会很弱,有没有更好的想法让可以做到文本编辑还可以试衣(大意了,应该讲一下cvpr2024谷歌的instructimagen这种工作)
8. 文生图可控生成的能力会不会下降,(会有一点,可图做的还是不错的)
9. 介绍一下美团做的项目,k-means怎么选质心?为什么不用dbscan或者hdbscan? (我把这个忘了 得想想后面肯定还问)k-means聚类也不见得效果就好
10. 生成式检索和判别式的区别
11. 怎么之前都在做多模态和agic跑去做nlp了?
12. coding: 1262 可被三整除的最大和(我写的只过了样例,唉 这题看答案就很难)
13. 能不能提前实习,介绍了一下业务,做ipa插件应用(感觉得补补ipa最近的工作)
全部评论
大佬,有后续面经吗?
点赞 回复 分享
发布于 2024-11-26 11:58 福建
现在都要求提前实习吗
点赞 回复 分享
发布于 2024-09-10 15:19 北京
lz投的多模态还是nlp啊
点赞 回复 分享
发布于 2024-09-10 12:13 上海

相关推荐

05-16 09:55
腾讯_HR
腾讯-混元大模型面经-华5硕-主页内tui❗❗腾讯26届春招提前批/26届暑期实习生/日常实习生/25届补录招聘启动 | 所有专业类型均有岗位🏅中国民营企业500强排行榜第6位【在招岗位】1. 技术类:软件开发、技术运营、安全技术、测试与质量管理、技术研究、解决方案与服务、硬件开发2. 产品类:游戏产品、内容制作、通用产品、金融产品、项目管理3. 设计类:游戏美术、平面交互4. 市场类:战略投资、市场营销、公共关系、销售拓展5. 职能类:财经分析、人力资源、法律与公共政策、行政支持【招聘范围】应届生(24届、25届可投)、实习生(在校生可投)、青云计划(23届/24届/25届博士、24届/25届硕士)【网申链接】https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw腾讯-混元大模型面经-华5硕部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面腾讯-混元大模型面经-华5硕-主页内tui腾讯-混元大模型面经-华5硕-主页内tui❗❗腾讯26届春招提前批/26届暑期实习生/日常实习生/25届补录招聘启动 | 所有专业类型均有岗位🏅中国民营企业500强排行榜第6位【在招岗位】1. 技术类:软件开发、技术运营、安全技术、测试与质量管理、技术研究、解决方案与服务、硬件开发2. 产品类:游戏产品、内容制作、通用产品、金融产品、项目管理3. 设计类:游戏美术、平面交互4. 市场类:战略投资、市场营销、公共关系、销售拓展5. 职能类:财经分析、人力资源、法律与公共政策、行政支持【招聘范围】应届生(24届、25届可投)、实习生(在校生可投)、青云计划(23届/24届/25届博士、24届/25届硕士)【网申链接】https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw腾讯-混元大模型面经-华5硕部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面
点赞 评论 收藏
分享
评论
7
15
分享

创作者周榜

更多
牛客网
牛客企业服务