数据分析面试 - ML(1-SVM)
简介:
- 支持向量机是一种机器学习算法,主要用于分类和回归问题。
- 基于统计理论的结构风险最小化原则,通过
寻找最优超平面将数据集划分成不同的类别
,让不同类别之间的边界最大化。
- 核心思想:通过寻找最大间隔超平面将数据分成不同的类,同时用kernel function将数据映射到高维空间,以解决非线性分类问题。
优点:
1. 可以处理高维度数据&非线性分类问题
2. 用不同的kernel function适应不同的问题(线性KF- 线性可分问题;高斯KF-非线性可分问题)
3. 对噪声数据的鲁棒性比较强,可以通过设置软间隔来避免过于依赖噪声数据
缺点:
1. 二分类模型,对于多分类需要进行多次训练
2. 对于参数选择和KF选择敏感,要进行反复实验和调整
3. 不适合处理大规模的数据集,需要进行降维度/使用随机采样的方法
4. 不直接给出概率估计,需要使用间接的方法进行概率估计,eg: Platt缩放
对噪声和缺失值敏感:
1. 噪声:对于噪声数据的鲁棒性强,如果噪声数据太多,会影响模型性能,导致过拟合/欠拟合。为了避免过拟合可以使用软间隔来降低对噪声数据的依赖性。
2. 缺失值:svm需要对整个数据集进行训练,如果存在缺失值,就要对缺失值进行处理,否则回影响模型的性能。
- 支持向量机是一种机器学习算法,主要用于分类和回归问题。
- 基于统计理论的结构风险最小化原则,通过
- 核心思想:通过寻找最大间隔超平面将数据分成不同的类,同时用kernel function将数据映射到高维空间,以解决非线性分类问题。
优点:
1. 可以处理高维度数据&非线性分类问题
2. 用不同的kernel function适应不同的问题(线性KF- 线性可分问题;高斯KF-非线性可分问题)
3. 对噪声数据的鲁棒性比较强,可以通过设置软间隔来避免过于依赖噪声数据
缺点:
1. 二分类模型,对于多分类需要进行多次训练
2. 对于参数选择和KF选择敏感,要进行反复实验和调整
3. 不适合处理大规模的数据集,需要进行降维度/使用随机采样的方法
4. 不直接给出概率估计,需要使用间接的方法进行概率估计,eg: Platt缩放
对噪声和缺失值敏感:
1. 噪声:对于噪声数据的鲁棒性强,如果噪声数据太多,会影响模型性能,导致过拟合/欠拟合。为了避免过拟合可以使用软间隔来降低对噪声数据的依赖性。
2. 缺失值:svm需要对整个数据集进行训练,如果存在缺失值,就要对缺失值进行处理,否则回影响模型的性能。
全部评论
哪个公司
相关推荐
点赞 评论 收藏
分享
10-14 21:06
西北农林科技大学 数据分析师 点赞 评论 收藏
分享
11-04 22:03
武汉理工大学 Java
菜菜菜小白菜菜菜:我在字节实习了四个月,有转正的压力所以周末大部分也在公司自学,也是因为一些原因转正拖的很久,这个点还没答辩,过段时间才回去答辩。整个不确定性的焦虑贯穿了我的秋招三个月,我也曾经犹豫过是不是应该放弃转正走秋招更快,最后因为沉没成本一直舍不得放弃,前前后后七个月真的挺累的,尤其是没有来字节实习的同学已经校招拿到意向时更加焦虑。这段时间也跟mentor聊了很多次,他告诉我未来工作上或者生活上,比这些更头疼的事情会更多,关键还是要调整好自己的心态。转正没有通过从过程上来看其实跟你自身没太大的关系,拖了三个月不出结果显然是ld的问题,并且今年美团最近的开奖大家似乎都不是很乐观,所以不去也罢。我在字节实习的时候,6月份有一个赶上春招末期的25届同事刚面进来,也拿到了小sp的薪水。不要对这件事有太大的压力,时代的问题罢了 点赞 评论 收藏
分享
OPPO公司福利 1059人发布