签了阿里云意向后,岗位被改怎么办?

投票
本来被阿里云捞的数据研发岗,面试了几轮体验都很好,面试官也说了这个岗位不太需要coding。
因为觉得大数据方向还是挺有潜力的,又是大平台,能被捞也很感激,两周前签的意向。
结果!!这周又发邮件让重新签意向,岗位改成了运维!!一脸懵逼问了对接的人,说只是改了名字,都是不需要代码的运营岗。现在脑子已经无法正常思考了,请教各位牛友,这两个岗位完全不同吧?运维值得去吗?
全部评论
去啊,反正落实在简历上的工作内容都是包装的
点赞 回复 分享
发布于 04-25 11:49 北京
以后想从事的话可以去,想做开发就别去
点赞 回复 分享
发布于 2023-06-02 15:50 浙江

相关推荐

个人背景:🔥985硕士,计算机专业,研究方向为机器学习/数据挖掘- 有推荐系统相关项目,Kaggle竞赛经历- 面试岗位:滴滴出行-算法工程师(机器学习/运筹优化方向)📝 面试全流程回顾1. 笔试(线上编程+数学)-算法题(2道,LeetCode中等偏上难度)- 动态规划:最长递增子序列变种(需优化到O(nlogn))- 图论:Dijkstra算法实现+路径还原- 数学题(概率统计+线性代数)- 贝叶斯定理应用题(拼车场景下的概率计算)- 矩阵分解(SVD)的原理与优化意义2. 技术一面(1小时)- 代码能力- 手撕:实现带权随机抽样(Reservoir Sampling变种)- 代码优化:如何减少时间复杂度?- 机器学习基础- XGBoost vs LightGBM的差异?如何选择分裂点?- 如何解决推荐系统中的冷启动问题?- 业务场景题- 滴滴拼车订单匹配如何建模?(聚类+贪心算法的取舍)3. 技术二面(1.5小时)- 项目深挖- 详细介绍Kaggle竞赛方案(特征工程、模型融合技巧)- 追问:如果数据分布偏移(如疫情前后出行规律变化),如何调整模型?- 系统设计- 设计一个实时ETA(预估到达时间)系统:- 数据源(GPS/交通路况/历史数据)- 模型选型(时序模型+在线学习)- 异常情况处理(突发拥堵如何动态调整?)- 算法发散题- 如何用算法减少司机空驶率?(转化为图的最短路径问题)4. HR面(30分钟)- 团队协作经历、抗压能力举例- 期望薪资与工作地点偏好🌟 总体而言,滴滴面试强度还是可以的,问题问的很细,如果不会的话,同学们尽量委婉回答,引导面试官问出问题。滴滴待遇还是相当可以的,最后给大家一个内推链接,还有内推码。🚘投递方式【内推链接】https://app.mokahr.com/m/campus_apply/didiglobal/96064?recommendCode=DSW46Dg7&hash=%23%2Fjobs#/jobs【内推码】DSW46Dg7全流程跟进,投递的同学评论区留言,方便后续跟进,秋招加油!       
点赞 评论 收藏
分享
结合最近辅助修改的简历及项目,老师总结了部分大模型微调简历的踩雷点。🙅‍♂️错误示范:在 x任务中,获取 xxx 条数据,通过规则 or 脚本清洗出 x 条数据,然后微调 y 大模型,在业务上提升 x 个点。✍🏻原因:大模型微调的平台是现成的,基模是现成的,体现不出核心能力。✅应该怎么写?首先介绍业务背景:业务是一个销售对话业务,机器人是销售,代替真人,直接面对用户。我们会给模型设定任务,任务是 prompt 。步骤1️⃣.提取训练数据问题:1.真人通话每通电话任务是未知的,我们训练数据是任务+通话的 pair 对。2.真人通话很乱,与客户的对话是各种交叉的,导致 asr 后并不是一人一轮。解决方案:1.首先通过大模型 prompt 对该通电话提取任务,得到任务+ pair 对。需要用到 cot + reflection +多 Ilm 一致性+ debating 的模式。2.使用大模型根据以上任务和真人对话,让大模型编写出通话内容。提问,为什么要编写而不是直接用?步骤2️⃣.制定训练数据集问题:1、正常的对话内容,前面几句和后面几句基本上一致的。都是问候和拜拜,但是也有一些差异。2、因为都是相似场景,虽然任务不同,但是很多场景语义很相似。解决方案:1、基于轮次的权重采样:通过轮次设定权重进行 weighting sample 。解决问候和拜拜的高占比问题。2、基于语义的采样:使用 bert 对对话内容进行 embedding ,然后使用层次聚类通过调节阈值聚类出相似语义的类。对一个类里的样本进行随机采样,提问,为什么要对重复语义的数据进行下采样?3、基于客户类型和产品的采样,因为很多产品是热品,导致对话内容有偏,用户类型一样,需按照类型调整整体比例采样。提问,为什么要这么采样?步骤3️⃣.制定训练数据集我们直接把输出当作 target 进行训练。使用的 lora 训练,但是 lora alpha 设定成为4倍的时候达到了比较好的效果,经验值不同任务不一样,提问,在各种情况下要怎么调?步骤4️⃣.dpo训练问题:v1版本训练时,很多输出内容是对的,但是输出的语气不太像真人,机器人味还是很严重。解决方案:由于训练本身是有 ground truth 的,因此使用v1训练的模型,预测训练集,使用大模型对比两者语气不符合训练集的拿出来,使用训练集的 ground truth 和模型的预测数据作为 dpo 训练对,对v1版本模型重新训练。📳这里老师只是简要进行概括解答,具体情况和详细解答可以咨询辅导,如果想了解项目辅导,提升面试能力,欢迎后台联系。    
点赞 评论 收藏
分享
评论
1
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务