大厂系列:Redis八股文,速速收藏(二)

过期键的删除策略、淘汰策略

11. Redis过期键的删除策略

Redis的过期删除策略就是:惰性删除和定期删除两种策略配合使用。

惰性删除:惰性删除不会去主动删除数据,而是在访问数据的时候,再检查当前键值是否过期,如果过期则执行删除并返回 null 给客户端,如果没有过期则返回正常信息给客户端。它的优点是简单,不需要对过期的数据做额外的处理,只有在每次访问的时候才会检查键值是否过期,缺点是删除过期键不及时,造成了一定的空间浪费。

定期删除:Redis会周期性的随机测试一批设置了过期时间的key并进行处理。测试到的已过期的key将被删除。

附:删除key常见的三种处理方式。

1、定时删除

在设置某个key 的过期时间同时,我们创建一个定时器,让定时器在该过期时间到来时,立即执行对其进行删除的操作。

优点:定时删除对内存是最友好的,能够保存内存的key一旦过期就能立即从内存中删除。

缺点:对CPU最不友好,在过期键比较多的时候,删除过期键会占用一部分 CPU 时间,对服务器的响应时间和吞吐量造成影响。

2、惰性删除

设置该key 过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。

优点:对 CPU友好,我们只会在使用该键时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查。

缺点:对内存不友好,如果一个键已经过期,但是一直没有使用,那么该键就会一直存在内存中,如果数据库中有很多这种使用不到的过期键,这些键便永远不会被删除,内存永远不会释放。从而造成内存泄漏。

3、定期删除

每隔一段时间,我们就对一些key进行检查,删除里面过期的key。

优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。

缺点:难以确定删除操作执行的时长和频率。如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好。如果执行的太少,那又和惰性删除一样了,过期键占用的内存不会及时得到释放。另外最重要的是,在获取某个键时,如果某个键的过期时间已经到了,但是还没执行定期删除,那么就会返回这个键的值,这是业务不能忍受的错误。

12. Redis key的过期时间和永久有效分别怎么设置?

通过expire或pexpire命令,客户端可以以秒或毫秒的精度为数据库中的某个键设置生存时间。

与expire和pexpire命令类似,客户端可以通过expireat和pexpireat命令,以秒或毫秒精度给数据库中的某个键设置过期时间,可以理解为:让某个键在某个时间点过期。

13. Redis内存淘汰策略

Redis是不断的删除一些过期数据,但是很多没有设置过期时间的数据也会越来越多,那么Redis内存不够用的时候是怎么处理的呢?答案就是淘汰策略。此类的

当Redis的内存超过最大允许的内存之后,Redis会触发内存淘汰策略,删除一些不常用的数据,以保证Redis服务器的正常运行。

Redisv4.0前提供 6种数据淘汰策略:

  • volatile-lru:利用LRU算法移除设置过过期时间的key (LRU:最近使用 Least Recently Used )
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的)
  • volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  • volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  • allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  • no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!

Redisv4.0后增加以下两种:

  • volatile-lfu:从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰(LFU(Least Frequently Used)算法,也就是最频繁被访问的数据将来最有可能被访问到)
  • allkeys-lfu:当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的key。

内存淘汰策略可以通过配置文件来修改,Redis.conf对应的配置项是maxmemory-policy 修改对应的值就行,默认是noeviction。

缓存异常

缓存异常有四种类型,分别是缓存和数据库的数据不一致、缓存雪崩、缓存击穿和缓存穿透。

14. 如何保证缓存与数据库双写时的数据一致性?

背景:使用到缓存,无论是本地内存做缓存还是使用 Redis 做缓存,那么就会存在数据同步的问题,因为配置信息缓存在内存中,而内存时无法感知到数据在数据库的修改。这样就会造成数据库中的数据与缓存中数据不一致的问题。

共有四种方案:

  1. 先更新数据库,后更新缓存
  2. 先更新缓存,后更新数据库
  3. 先删除缓存,后更新数据库
  4. 先更新数据库,后删除缓存

第一种和第二种方案,没有人使用的,因为第一种方案存在问题是:并发更新数据库场景下,会将脏数据刷到缓存。

第二种方案存在的问题是:如果先更新缓存成功,但是数据库更新失败,则肯定会造成数据不一致。

目前主要用第三和第四种方案。

15. 先删除缓存,后更新数据库

该方案也会出问题,此时来了两个请求,请求 A(更新操作) 和请求 B(查询操作)

  1. 请求A进行写操作,删除缓存
  2. 请求B查询发现缓存不存在
  3. 请求B去数据库查询得到旧值
  4. 请求B将旧值写入缓存
  5. 请求A将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

答案一:延时双删

最简单的解决办法延时双删

使用伪代码如下:

public void write(String key,Object data){
        Redis.delKey(key);
        db.updateData(data);
        Thread.sleep(1000);
        Redis.delKey(key);
    }

转化为中文描述就是 (1)先淘汰缓存 (2)再写数据库(这两步和原来一样) (3)休眠1秒,再次淘汰缓存,这么做,可以将1秒内所造成的缓存脏数据,再次删除。确保读请求结束,写请求可以删除读请求造成的缓存脏数据。自行评估自己的项目的读数据业务逻辑的耗时,写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。

如果使用的是 Mysql 的读写分离的架构的话,那么其实主从同步之间也会有时间差。

此时来了两个请求,请求 A(更新操作) 和请求 B(查询操作)

  1. 请求 A 更新操作,删除了 Redis
  2. 请求主库进行更新操作,主库与从库进行同步数据的操作
  3. 请 B 查询操作,发现 Redis 中没有数据
  4. 去从库中拿去数据
  5. 此时同步数据还未完成,拿到的数据是旧数据

此时的解决办法就是如果是对 Redis 进行填充数据的查询数据库操作,那么就强制将其指向主库进行查询。

答案二: 更新与读取操作进行异步串行化

采用更新与读取操作进行异步串行化

异步串行化

我在系统内部维护n个内存队列,更新数据的时候,根据数据的唯一标识,将该操作路由之后,发送到其中一个jvm内部的内存队列中(对同一数据的请求发送到同一个队列)。读取数据的时候,如果发现数据不在缓存中,并且此时队列里有更新库存的操作,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也将发送到同一个jvm内部的内存队列中。然后每个队列对应一个工作线程,每个工作线程串行地拿到对应的操作,然后一条一条的执行。

这样的话,一个数据变更的操作,先执行删除缓存,然后再去更新数据库,但是还没完成更新的时候,如果此时一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,排在刚才更新库的操作之后,然后同步等待缓存更新完成,再读库。

读操作去重

多个读库更新缓存的请求串在同一个队列中是没意义的,因此可以做过滤,如果发现队列中已经有了该数据的更新缓存的请求了,那么就不用再放进去了,直接等待前面的更新操作请求完成即可,待那个队列对应的工作线程完成了上一个操作(数据库的修改)之后,才会去执行下一个操作(读库更新缓存),此时会从数据库中读取最新的值,然后写入缓存中。

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。(返回旧值不是又导致缓存和数据库不一致了么?那至少可以减少这个情况发生,因为等待超时也不是每次都是,几率很小吧。这里我想的是,如果超时了就直接读旧值,这时候仅仅是读库后返回而不放缓存)

16. 先更新数据库,后删除缓存

这一种情况也会出现问题,比如更新数据库成功了,但是在删除缓存的阶段出错了没有删除成功,那么此时再读取缓存的时候每次都是错误的数据了。

此时解决方案就是利用消息队列进行删除的补偿。具体的业务逻辑用语言描述如下:

  1. 请求 A 先对数据库进行更新操作
  2. 在对 Redis 进行删除操作的时候发现报错,删除失败
  3. 此时将Redis 的 key 作为消息体发送到消息队列中
  4. 系统接收到消息队列发送的消息后再次对 Redis 进行删除操作

但是这个方案会有一个缺点就是会对业务代码造成大量的侵入,深深的耦合在一起,所以这时会有一个优化的方案,我们知道对 Mysql 数据库更新操作后再 binlog 日志中我们都能够找到相应的操作,那么我们可以订阅 Mysql 数据库的 binlog 日志对缓存进行操作。

17. 什么是缓存击穿?

缓存击穿跟缓存雪崩有点类似,缓存雪崩是大规模的key失效,而缓存击穿是某个热点的key失效,大并发集中对其进行请求,就会造成大量请求读缓存没读到数据,从而导致高并发访问数据库,引起数据库压力剧增。这种现象就叫做缓存击穿。

从两个方面解决,第一是否可以考虑热点key不设置过期时间,第二是否可以考虑降低打在数据库上的请求数量。

解决方案:

  • 在缓存失效后,通过互斥锁或者队列来控制读数据写缓存的线程数量,比如某个key只允许一个线程查询数据和写缓存,其他线程等待。这种方式会阻塞其他的线程,此时系统的吞吐量会下降
  • 热点数据缓存永远不过期。永不过期实际包含两层意思:物理不过期,针对热点key不设置过期时间逻辑过期,把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建

18. 什么是缓存穿透?

缓存穿透是指用户请求的数据在缓存中不存在即没有命中,同时在数据库中也不存在,导致用户每次请求该数据都要去数据库中查询一遍。如果有恶意攻击者不断请求系统中不存在的数据,会导致短时间大量请求落在数据库上,造成数据库压力过大,甚至导致数据库承受不住而宕机崩溃。

缓存穿透的关键在于在Redis中查不到key值,它和缓存击穿的根本区别在于传进来的key在Redis中是不存在的。假如有黑客传进大量的不存在的key,那么大量的请求打在数据库上是很致命的问题,所以在日常开发中要对参数做好校验,一些非法的参数,不可能存在的key就直接返回错误提示。

解决方法:

  • 将无效的key存放进Redis中:

当出现Redis查不到数据,数据库也查不到数据的情况,我们就把这个key保存到Redis中,设置value="null",并设置其过期时间极短,后面再出现查询这个key的请求的时候,直接返回null,就不需要再查询数据库了。但这种处理方式是有问题的,假如传进来的这个不存在的Key值每次都是随机的,那存进Redis也没有意义。

  • 使用布隆过滤器:

如果布隆过滤器判定某个 key 不存在布隆过滤器中,那么就一定不存在,如果判定某个 key 存在,那么很大可能是存在(存在一定的误判率)。于是我们可以在缓存之前再加一个布隆过滤器,将数据库中的所有key都存储在布隆过滤器中,在查询Redis前先去布隆过滤器查询 key 是否存在,如果不存在就直接返回,不让其访问数据库,从而避免了对底层存储系统的查询压力。

如何选择:针对一些恶意攻击,攻击带过来的大量key是随机,那么我们采用第一种方案就会缓存大量不存在key的数据。那么这种方案就不合适了,我们可以先对使用布隆过滤器方案进行过滤掉这些key。所以,针对这种key异常多、请求重复率比较低的数据,优先使用第二种方案直接过滤掉。而对于空数据的key有限的,重复率比较高的,则可优先采用第一种方式进行缓存。

19. 什么是缓存雪崩?

如果缓在某一个时刻出现大规模的key失效,那么就会导致大量的请求打在了数据库上面,导致数据库压力巨大,如果在高并发的情况下,可能瞬间就会导致数据库宕机。这时候如果运维马上又重启数据库,马上又会有新的流量把数据库打死。这就是缓存雪崩。

造成缓存雪崩的关键在于同一时间的大规模的key失效,主要有两种可能:第一种是Redis宕机,第二种可能就是采用了相同的过期时间。

解决方案:

1、事前:

  • 均匀过期:设置不同的过期时间,让缓存失效的时间尽量均匀,避免相同的过期时间导致缓存雪崩,造成大量数据库的访问。如把每个Key的失效时间都加个随机值,setRedis(Key,value,time + Math.random() * 10000);,保证数据不会在同一时间大面积失效。
  • 分级缓存:第一级缓存失效的基础上,访问二级缓存,每一级缓存的失效时间都不同。
  • 热点数据缓存永远不过期。永不过期实际包含两层意思:物理不过期,针对热点key不设置过期时间逻辑过期,把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建
  • 保证Redis缓存的高可用,防止Redis宕机导致缓存雪崩的问题。可以使用 主从+ 哨兵,Redis集群来避免 Redis 全盘崩溃的情况。

2、事中:

  • 互斥锁:在缓存失效后,通过互斥锁或者队列来控制读数据写缓存的线程数量,比如某个key只允许一个线程查询数据和写缓存,其他线程等待。这种方式会阻塞其他的线程,此时系统的吞吐量会下降
  • 使用熔断机制,限流降级。当流量达到一定的阈值,直接返回“系统拥挤”之类的提示,防止过多的请求打在数据库上将数据库击垮,至少能保证一部分用户是可以正常使用,其他用户多刷新几次也能得到结果。

3、事后:

开启Redis持久化机制,尽快恢复缓存数据,一旦重启,就能从磁盘上自动加载数据恢复内存中的数据。

20. 什么是缓存预热?

缓存预热是指系统上线后,提前将相关的缓存数据加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题,用户直接查询事先被预热的缓存数据。

如果不进行预热,那么Redis初始状态数据为空,系统上线初期,对于高并发的流量,都会访问到数据库中, 对数据库造成流量的压力。

缓存预热解决方案:

  • 数据量不大的时候,工程启动的时候进行加载缓存动作;
  • 数据量大的时候,设置一个定时任务脚本,进行缓存的刷新;
  • 数据量太大的时候,优先保证热点数据进行提前加载到缓存。
全部评论

相关推荐

游戏客户端劝退第11...:那我实习一年,去社招,是不是一年经验了
点赞 评论 收藏
分享
评论
1
3
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务