18.9.1 CAP定理与BASE理论应用
1. CAP定理基础概念
1.1 CAP定理原理
public class CAPTheoremPrinciple {
/*
* CAP定理核心概念:
*
* C - Consistency (一致性)
* 所有节点在同一时间看到的数据是一致的
*
* A - Availability (可用性)
* 系统在任何时候都能提供服务
*
* P - Partition Tolerance (分区容错性)
* 系统能够容忍网络分区故障
*
* CAP定理:分布式系统最多只能满足CAP中的两个特性
*
* 常见组合:
* - CP系统:强一致性,牺牲可用性(如HBase、Redis Cluster)
* - AP系统:高可用性,牺牲一致性(如Cassandra、DynamoDB)
* - CA系统:理论存在,实际不可能(网络分区不可避免)
*/
public void demonstrateCAPTheorem() {
System.out.println("=== CAP定理演示 ===");
demonstrateCPSystem();
demonstrateAPSystem();
demonstratePartitionScenario();
}
private void demonstrateCPSystem() {
System.out.println("--- CP系统演示 ---");
CPDistributedSystem cpSystem = new CPDistributedSystem();
System.out.println("1. 正常情况下的读写操作:");
cpSystem.write("key1", "value1");
String value = cpSystem.read("key1");
System.out.println("读取结果: " + value);
System.out.println("\n2. 网络分区情况:");
cpSystem.simulateNetworkPartition();
try {
cpSystem.write("key2", "value2");
} catch (Exception e) {
System.out.println("写入失败: " + e.getMessage());
}
System.out.println("CP系统特点: 保证一致性,牺牲可用性\n");
}
private void demonstrateAPSystem() {
System.out.println("--- AP系统演示 ---");
APDistributedSystem apSystem = new APDistributedSystem();
System.out.println("1. 正常情况下的读写操作:");
apSystem.write("key1", "value1");
String value = apSystem.read("key1");
System.out.println("读取结果: " + value);
System.out.println("\n2. 网络分区情况:");
apSystem.simulateNetworkPartition();
apSystem.write("key2", "value2");
String value2 = apSystem.read("key2");
System.out.println("分区后读取: " + value2);
System.out.println("AP系统特点: 保证可用性,允许数据不一致\n");
}
private void demonstratePartitionScenario() {
System.out.println("--- 网络分区场景分析 ---");
NetworkPartitionSimulator simulator = new NetworkPartitionSimulator();
System.out.println("1. 模拟网络分区:");
simulator.createPartition();
System.out.println("2. CP系统响应:");
simulator.testCPSystemInPartition();
System.out.println("3. AP系统响应:");
simulator.testAPSystemInPartition();
System.out.println("4. 分区恢复:");
simulator.healPartition();
}
}
// CP系统实现
class CPDistributedSystem {
private java.util.Map<String, String> data = new java.util.concurrent.ConcurrentHashMap<>();
private boolean networkPartitioned = false;
private int replicationFactor = 3;
private int requiredAcks = 2; // 需要至少2个节点确认
public void write(String key, String value) {
if (networkPartitioned) {
throw new RuntimeException("网络分区,无法保证一致性,拒绝写入");
}
System.out.println(" 执行强一致性写入:");
System.out.println(" 等待 " + requiredAcks + " 个节点确认...");
// 模拟等待多个节点确认
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
data.put(key, value);
System.out.println(" 写入成功: " + key + " = " + value);
}
public String read(String key) {
if (networkPartitioned) {
throw new RuntimeException("网络分区,无法保证一致性,拒绝读取");
}
System.out.println(" 执行强一致性读取:");
System.out.println(" 从主节点读取最新数据");
return data.get(key);
}
public void simulateNetworkPartition() {
this.networkPartitioned = true;
System.out.println(" 网络分区发生,系统进入只读模式");
}
}
// AP系统实现
class APDistributedSystem {
private java.util.Map<String, String> nodeA = new java.util.concurrent.ConcurrentHashMap<>();
private java.util.Map<String, String> nodeB = new java.util.concurrent.ConcurrentHashMap<>();
private boolean networkPartitioned = false;
public void write(String key, String value) {
System.out.println(" 执行最终一致性写入:");
if (!networkPartitioned) {
// 正常情况,写入所有节点
nodeA.put(key, value);
nodeB.put(key, value);
System.out.println(" 写入所有节点: " + key + " = " + value);
} else {
// 分区情况,只写入可用节点
nodeA.put(key, value);
System.out.println(" 写入可用节点A: " + key + " = " + value);
System.out.println(" 节点B暂时不可达,稍后同步");
}
}
public String read(String key) {
System.out.println(" 执行最终一致性读取:");
if (!networkPartitioned) {
System.out.println(" 从就近节点读取");
return nodeA.get(key);
} else {
System.out.println(" 从可用节点A读取");
return nodeA.get(key);
}
}
public void simulateNetworkPartition() {
this.networkPartitioned = true;
System.out.println(" 网络分区发生,系统继续提供服务");
}
}
// 网络分区模拟器
class NetworkPartitionSimulator {
public void createPartition() {
System.out.println(" 创建网络分区:");
System.out.println(" 节点A和节点B之间网络中断");
System.out.println(" 客户端只能访问节点A");
}
public void testCPSystemInPartition() {
System.out.println(" CP系统: 检测到分区,停止服务保证一致性");
System.out.println(" 优点: 数据强一致");
System.out.println(" 缺点: 服务不可用");
}
public void testAPSystemInPartition() {
System.out.println(" AP系统: 继续提供服务,允许数据不一致");
System.out.println(" 优点: 服务持续可用");
System.out.println(" 缺点: 数据可能不一致");
}
public void healPartition() {
System.out.println(" 网络分区恢复:");
System.out.println(" 节点间网络连接恢复");
System.out.println(" 开始数据同步和一致性修复");
}
}
2. BASE理论详解
2.1 BASE理论原理
public class BASETheoryPrinciple {
/*
* BASE理论核心概念:
*
* BA - Basically Available (基本可用)
* 系统在出现故障时,允许损失部分可用性
* 如响应时间增加、功能降级等
*
* S - Soft State (软状态)
* 系统中的数据可以存在中间状态
* 允许系统在不同节点间的数据副本存在延时
*
* E - Eventually Consistent (最终一致性)
* 系统中所有数据副本,在经过一段时间后
* 最终能够达到一致的状态
*
* BASE理论是对CAP定理的延伸,通过牺牲强一致性
* 来获得更好的可用性,适合大规模分布式系统
*/
public void demonstrateBASETheory() {
System.out.println("=== BASE理论演示 ===");
demonstrateBasicallyAvailable();
demonstrateSoftState();
demonstrateEventualConsistency();
}
private void demonstrateBasicallyAvailable() {
System.out.println("--- 基本可用演示 ---");
ECommerceSystem ecommerce = new ECommerceSystem();
System.out.println("1. 正常情况:");
ecommerce.processOrder("order-001", "user-123");
System.out.println("\n2. 系统负载过高:");
ecommerce.simulateHighLoad();
ecommerce.processOrder("order-002", "user-124");
System.out.println("\n3. 部分服务故障:");
ecommerce.simulatePartialFailure();
ecommerce.processOrder("order-003", "user-125");
System.out.println("基本可用: 系统在故障时仍能提供核心服务\n");
}
private void demonstrateSoftState() {
System.out.println("--- 软状态演示 ---");
DistributedCache cache = new DistributedCache();
System.out.println("1. 数据写入:");
cache.put("user:123", "张三");
System.out.println("2. 不同节点的状态:");
cache.showNodeStates();
System.out.println("3. 数据同步过程:");
cache.syncNodes();
cache.showNodeStates();
System.out.println("软状态: 允许系统存在中间状态\n");
}
private void demonstrateEventualConsistency() {
System.out.println("--- 最终一致性演示 ---");
EventualConsistencyDemo demo = new EventualConsistencyDemo();
System.out.println("1. 用户注册:");
demo.registerUser("user-001", "alice@example.com");
System.out.println("2. 检查各系统状态:");
demo.checkSystemStates();
System.out.println("3. 等待数据同步:");
demo.waitForConsistency();
System.out.println("4. 最终一致性达成:");
demo.checkFinalConsistency();
System.out.println("最终一致性: 经过时间后所有副本达到一致\n");
}
}
剩余60%内容,订阅专栏后可继续查看/也可单篇购买
Java面试圣经 文章被收录于专栏
Java面试圣经,带你练透java圣经