面试场景题:如何设计一个红包随机算法

目前在阿里云的面试过程中遇到了这道算法题,今天搜了下解法,整理出来

面试官:咱来写个算法题吧

设计一个抢红包的随机算法,比如一个人在群里发了100块钱的红包,群里有10个人一起来抢红包,每人抢到的金额随机分配。

1.所有人抢到的金额之和要等于红包金额,不能多也不能少。

2.每个人至少抢到1分钱。

3.最佳手气不超过红包总金额的90%

解题思路1:随机分配法

  • 钱的单位转换为分,每次在[1, leaveMoney]这个区间内随机一个值,记为r;
  • 计算一下剩余金额leaveMoney-r,剩余金额(单位:分)必须大于剩余人数,不然后面的人无法完成分配,例如10个人,有1个人抢了红包,剩余的money至少还需要9分钱,不然剩余的9人无法分;
  • 按照顺序随机n-1次,最后剩下的金额可以直接当做最后一个红包,不需要随机;

解题代码:

 public static List<Double> generate(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        //判断钱不够分,不处理
        if ((int)totalCents < people) {
            return result;
        }
        Random random = new Random();

        //每次生成随机数
        int n = people - 1;
        while (n > 0) {
            //随机数在[1, min(maxLimit, leaveMoney)]之间,单位是:分
            double min = Math.min(leaveMoney, maxLimit);
            double allocResult = 1 + random.nextInt((int)min);
            //判断这次分配后,后续的总金额仍然可分,且不超过90%总金额
            if (allocResult > maxLimit || (leaveMoney - allocResult) < n) {
                continue;
            }
            leaveMoney -= allocResult;
            n--;
            result.add(allocResult / 100.0);
        }
        result.add(leaveMoney / 100.0);
        return result;
    }

以下是多次运行的结果:

[37.77, 50.76, 1.89, 7.89, 0.26, 0.24, 0.25, 0.78, 0.06, 0.1]
[89.38, 2.45, 3.5, 4.43, 0.03, 0.08, 0.06, 0.04, 0.01, 0.02]
[53.51, 40.86, 5.48, 0.04, 0.06, 0.01, 0.01, 0.01, 0.01, 0.01]
[42.71, 0.27, 38.99, 4.5, 4.02, 4.58, 2.97, 0.84, 0.21, 0.91]

通过多次运行的结果,可以看到越早抢红包的人,抢到的金额越大,所以题目还可以变形

要求红包金额分布均衡

面试官:继续改进红包生成算法,要求:

1.要保证红包拆分的金额尽可能分布均衡,不要出现两极分化太严重的情况。

解题思路2:二倍均值法

二倍均值法:假设剩余红包金额为m元,剩余人数为n,那么有如下公式:

每次抢到的金额 = 随机区间 [0.01,m /n × 2 - 0.01]元

这个公式,保证了每次随机金额的平均值是相等的,不会因为抢红包的先后顺序而造成不公平。

举个例子如下:

假设有5个人,红包总额100元。100÷5×2 = 40,所以第1个人抢到的金额随机范围是[0.01,39.99]元,在正常情况下,平均可以抢到20元。

假设第1个人随机抢到了20元,那么剩余金额是80元。80÷4×2 = 40,所以第2个人抢到的金额的随机范围同样是[0.01,39.99]元,在正常的情况下,还是平均可以抢到20元。假设第2个人随机抢到了20元,那么剩余金额是60元。60÷3×2 = 40,所以第3个人抢到的金额的随机范围同样是[0.01,39.99]元,平均可以抢到20元。以此类推,每一次抢到金额随机范围的均值是相等的。

解题代码:

public static List<Double> allocateRedEnvelop(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        Random random = new Random();
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        int n = people;
        //注意是大于1,最后1个人领取剩余的钱
        while (n > 1) {
            //生成随机金额的范围是[1, leaveMoney / n * 2 - 1], 注意nextInt方法生成结果范围是左闭右开的
            double allocatMoney = 1 + random.nextInt((int)leaveMoney / n * 2 - 1);
            result.add(allocatMoney / 100.0);
            n--;
            leaveMoney -= allocatMoney;
        }
        result.add(leaveMoney / 100.0);
        return result;
    }

生成结果测试如下,结果值比较随机了,领取的红包金额和先后顺序无关了

[8.58, 4.56, 20.88, 13.83, 7.6, 3.94, 10.87, 8.66, 20.92, 0.16]
[3.31, 2.08, 15.99, 16.79, 13.13, 0.61, 17.38, 10.93, 4.93, 14.85]
[0.24, 21.86, 15.57, 16.86, 3.45, 3.18, 5.48, 13.01, 6.76, 13.59]

解题思路3:线段切割法

考虑一种新的解法,把红包总金额想象成一条很长的线段,而每个人抢到的金额就是这条主线段上的某个子线段,如下图:

  • 假设有N个人一起抢红包,红包总金额为M,就需要确定N-1个切割点;
  • 切割点的随机范围是(1,M),所有切割点确认后,子线段长度也就确定了
  • 如果随机切割点出现重复,则重新生成切割点

解题代码如下:

    /**
     * 线段切割法
     */
    public static List<Double> allocateRedEnvelopNew(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        Random random = new Random();
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        Set<Integer> pointCutSet = new HashSet<>();
        int n = people;
        while (pointCutSet.size() < people - 1) {
            //生成n - 1个切割点,随机点取值范围是[1, totalCents]
            pointCutSet.add(random.nextInt((int) totalCents) + 1);
        }
        //接着生成对应子线段的钱数
        Integer[] points = pointCutSet.toArray(new Integer[0]);
        Arrays.sort(points);
        result.add(points[0] / 100.0);
        //子线段+ 最后那段的长度 = totalCents,注意上一步是已经加了points[0],result中的所有元素和累加后的结果一定是totalCents,
        for (int i = 1; i < points.length; i++) {
            result.add((points[i] - points[i - 1]) / 100.0);
        }
        result.add((totalCents - points[points.length - 1]) / 100.0);
        return result;
    }

最后跑几次看看生成的随机效果,可以看到手气最佳的有到37块钱的,相比较二倍均值法,该方法手气最佳获取的金额可能更高

[20.24, 3.9, 7.63, 9.62, 15.41, 2.32, 0.21, 24.94, 9.66, 6.07]
[8.64, 33.55, 3.76, 15.35, 4.41, 9.85, 4.81, 15.9, 2.71, 1.02]
[11.31, 13.32, 16.53, 5.91, 8.69, 17.29, 11.09, 7.62, 7.14, 1.1]
[21.34, 8.24, 1.9, 7.98, 0.49, 0.32, 13.75, 37.27, 0.03, 8.68]

以上就是关于红包随机算法的所有解题方法了,面试中如果遇到考这道算法题,需要问清楚红包随机的情况,有没有要求分布均衡。

如果觉得对面试有帮助的话,记得给文章点赞哦~

#软件开发笔面经#
全部评论
最后一种方法如何限制金额不大于总数的90%呢?好像有点问题
1 回复 分享
发布于 04-04 20:22 广东
你是我见过最美丽的牛客男孩
点赞 回复 分享
发布于 04-04 20:03 广东
思路1会不会存在最后一个人金额大于90%的情况
点赞 回复 分享
发布于 04-04 16:14 广东
前段时间面试京东被问到这个,没答出来
点赞 回复 分享
发布于 03-23 20:12 湖北

相关推荐

07-16 14:42
浙江大学 C++
7.13号参加了网易互娱上海引擎沙龙的现场面试,也是非常没有自知之明了,感觉现场大佬云集,被复旦上交游戏相关的大佬包围了。面试官也很专业很随和,个人感觉聊的很开心,然后现场出结果,直接挂了。第二次面网易了,上次是暑期实习,也是一面挂了,自身能力也不太够,经历也不匹配,不过感觉网易的面试官都很不错,非常专业。在此放上面经。首先是问项目和简历,略过。(不过网易对简历挖的不深,但是很喜欢知识迁移,比如说从我的项目引申出去,加一个场景,问我会怎么处理,这种情况我每次都答得不好)然后是八股环节~不会问常规八股,首先问智能指针shared_ptr的实现,然后问一个计数器是否是线程安全的(shared_ptr本身是线程安全的,但是我自己实现的不是),要我写一段反例代码说明为什么不是线程安全的。考察了一些多线程的知识,后续又问了互斥锁和读写锁的区别和实现。感觉自己还是理解的不透彻,之前一直是在背基础八股,稍微深问一些,就模糊了。然后是问快排,如何不用递归实现。(其实很简单,就是通过栈去实现,但是我在现场被自己绕进去了,经面试官提醒才写出来)最后是问了一下为什么要做游戏,反问环节问了简历还怎么优化。总计时长五十分钟左右,感觉面试官非常专业,可惜自己实在是差点意思。最后想问一下大家如何更深入系统得去学习八股相关的知识,现在感觉只是背了一些博主总结的表面八股,再深入不知道如何下手,很难跟面试官聊得有深度,学起来感觉像无头苍蝇。
查看8道真题和解析
点赞 评论 收藏
分享
评论
17
70
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务