美团后端面经

4.14 一面

自我介绍

  • 学校导师允许出来实习吗
  • 啥时候能来实习
  • 实习多久

针对实习/项目

  • 项目中既用了 Kafka 又用了 RocketMQ,是怎么做技术选型的?他们的使用场景?
  • 为什么用 redis 实现分布式锁,zookeeper 和 redis 怎么选择
  • 说一下项目中 ElasticSearch 使用场景

针对简历八股

  • redis 的 hash 扩容,hashmap 怎么扩容,他们的对比
  • hashmap 结构,红黑树作用
  • 说一下 Java 强引用、软引用、弱引用、虚引用
  • 说一下 JVM 内存模型,本地方法栈和虚拟机栈区别?
  • 类加载过程
  • 垃圾回收机制,频繁 GC 怎么处理
  • bean 生命周期
  • 说一下对 IOC ,AOP 的理解
  • TCP 连接断开为什么要三次握手四次挥手
  • 说一下 TCP 各种状态
  • git merge , rebase 区别,rebase 的缺点
  • mysql 内连接,外连接,左连接,右连接

算法

  • 给定 n 个点的坐标,返回 距离原点最近的 k 个点的坐标

topk : 大顶堆 / 快排

4.19 二面

针对实习 / 场景

  • 介绍实习项目,你负责的工作内容
  • 难点,怎么解决的
  • 你的角色,mentor带?
  • qps?
  • 部署时遇到过频繁 fullGC 情况吗?怎么解决
  • 多线程下,一个线程 out of memory 对其他线程有什么影响?

算法

  • 链表和动态规划 选择了链表:重排链表

4.27 三面

主要针对实习经历

5.25 offer

#面经#
全部评论
我也刚面美团,不知道为啥感觉比你简单好多😂
点赞 回复 分享
发布于 2023-04-13 22:48 北京
虽然但是,今天不是才四月十三号吗
点赞 回复 分享
发布于 2023-04-13 22:47 北京
美团二面是HR面?
点赞 回复 分享
发布于 2023-04-13 20:03 河南
实习不应该是导师给推荐吗?
点赞 回复 分享
发布于 2023-04-13 19:33 陕西

相关推荐

05-16 09:55
腾讯_HR
腾讯-混元大模型面经-华5硕-主页内tui❗❗腾讯26届春招提前批/26届暑期实习生/日常实习生/25届补录招聘启动 | 所有专业类型均有岗位🏅中国民营企业500强排行榜第6位【在招岗位】1. 技术类:软件开发、技术运营、安全技术、测试与质量管理、技术研究、解决方案与服务、硬件开发2. 产品类:游戏产品、内容制作、通用产品、金融产品、项目管理3. 设计类:游戏美术、平面交互4. 市场类:战略投资、市场营销、公共关系、销售拓展5. 职能类:财经分析、人力资源、法律与公共政策、行政支持【招聘范围】应届生(24届、25届可投)、实习生(在校生可投)、青云计划(23届/24届/25届博士、24届/25届硕士)【网申链接】https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw腾讯-混元大模型面经-华5硕部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面腾讯-混元大模型面经-华5硕-主页内tui腾讯-混元大模型面经-华5硕-主页内tui❗❗腾讯26届春招提前批/26届暑期实习生/日常实习生/25届补录招聘启动 | 所有专业类型均有岗位🏅中国民营企业500强排行榜第6位【在招岗位】1. 技术类:软件开发、技术运营、安全技术、测试与质量管理、技术研究、解决方案与服务、硬件开发2. 产品类:游戏产品、内容制作、通用产品、金融产品、项目管理3. 设计类:游戏美术、平面交互4. 市场类:战略投资、市场营销、公共关系、销售拓展5. 职能类:财经分析、人力资源、法律与公共政策、行政支持【招聘范围】应届生(24届、25届可投)、实习生(在校生可投)、青云计划(23届/24届/25届博士、24届/25届硕士)【网申链接】https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw腾讯-混元大模型面经-华5硕部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面
点赞 评论 收藏
分享
评论
8
60
分享

创作者周榜

更多
牛客网
牛客企业服务