题解 | #计算字符串的编辑距离#
动态规划
dp[i][j]表示A[1...i]和B[1...j]的最小操作
若A[i] == B[j],则dp[i][j] = dp[i-1][j-1];
若A[i] != B[j],则:
1)A[1...i-1]变为B[1...j],删除A[i],即dp[i][j] = dp[i-1][j] + 1
2)A[1...i]变为B[1...j-1],删除B[j],即dp[i][j] = dp[i][j-1] + 1
dp[i][j]表示A[1...i]和B[1...j]的最小操作
若A[i] == B[j],则dp[i][j] = dp[i-1][j-1];
若A[i] != B[j],则:
1)A[1...i-1]变为B[1...j],删除A[i],即dp[i][j] = dp[i-1][j] + 1
2)A[1...i]变为B[1...j-1],删除B[j],即dp[i][j] = dp[i][j-1] + 1
3)A[1...i-1]变为B[1...j-1],将A[i]修改为B[j],即dp[i][j] = dp[i-1][j-1] + 1
import java.util.*; public class Main { public static void main(String[] args) { // 20:05 Scanner sc = new Scanner(System.in); String str1 = sc.nextLine(); String str2 = sc.nextLine(); /** 动态规划 dp[i][j]表示A[1...i]和B[1...j]的最小操作 若A[i] == B[j],则dp[i][j] = dp[i-1][j-1]; 若A[i] != B[j],则: 1)A[1...i-1]变为B[1...j],删除A[i],即dp[i][j] = dp[i-1][j] + 1 2)A[1...i]变为B[1...j-1],删除B[j],即dp[i][j] = dp[i][j-1] + 1 3)A[1...i-1]变为B[1...j-1],将A[i]修改为B[j],即dp[i][j] = dp[i-1][j-1] + 1 */ int len1 = str1.length(); int len2 = str2.length(); int[][] dp = new int[len1+1][len2+1]; for (int i = 0; i <= len1; i++) { dp[i][0] = i; } for (int i = 0; i <= len2; i++) { dp[0][i] = i; } for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (str1.charAt(i-1) != str2.charAt(j-1)) { dp[i][j] = Math.min(dp[i-1][j]+1, dp[i][j-1]+1); dp[i][j] = Math.min(dp[i][j], dp[i-1][j-1]+1); } else { dp[i][j] = dp[i-1][j-1]; } } } System.out.println(dp[len1][len2]); } }