【python数据分析入门到高级】:超参数调整

超参数调整,一种选择是手动处理超参数,直到找到超参数值的最佳组合。这将是一个非常复杂的工作,我们可以通过sklearn中的一些方法来进行搜索。我们所需要做的就是告诉它我们想用哪些超参数进行实验,以及尝试哪些值,然后它将使用交叉验证来评估所有可能的超参数值组合。

1 使用GridSearchCV

  • 这种方法就是通过不断搜索匹配选出最好的超参数

具体代码如下

# 导入所需库 import numpy as np from sklearn import linear_model, datasets from sklearn.model_selection import GridSearchCV
# 加载数据 iris = datasets.load_iris() features = iris.data target = iris.target
# 创建模型 logistic = linear_model.LogisticRegression()

logistic回归有两个参数,一个是正则化惩罚的方式L1,L2 还有一个是正则化系数C

penalty = ['l1', 'l2']
C = np.logspace(0, 4, 10)
hyperparameters = dict(C=C, penalty=penalty)
# 创建网格搜索对象 gridsearch = GridSearchCV(logistic, hyperparameters, cv=5)

默认情况下,在找到最佳超参数之后,GridSearchCV将使用最佳超参数和整个数据集重新训练模型

best_model = gridsearch.fit(features, target)

下面我们来看一下最优的具体超参数

best_model.best_estimator_.get_params()
{'C': 7.742636826811269,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'auto',
 'n_jobs': None,
 'penalty': 'l2',
 'random_state': None,
 'solver': 'lbfgs',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}

正则化系数取C:7.74,惩罚项选择L2正则化

best_model.predict(features)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

12.2使用随机搜索选择模型

当您探索相对较少的组合时,网格搜索方法很好,如前一个示例中所示,但当超参数搜索空间较大时,通常最好使用randomizedsearchcv。该类的使用方式与GridSearchCVclass大致相同,但它不是尝试所有可能的组合,而是评估给定的通过在每次迭代中为每个HyperParameter选择一个随机值来计算随机组合的数量。这种方法有两个主要好处

  • 如果让随机搜索运行1000次迭代,这种方法将为每个超参数探索1000个不同的值(而不是网格搜索方法中每个超参数只有几个值)。

  • 只需设置迭代次数,就可以更好地控制要分配给hyperparametersearch的计算预算

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
c = uniform(loc=0, scale=4)
hyperparameters = dict(C=c, penalty=penalty)
randomizedsearchCV = RandomizedSearchCV(logistic, hyperparameters, random_state=1, n_iter=100, cv=5)
best_model = randomizedsearchCV.fit(features, target)
best_model.best_estimator_.get_params()
{'C': 1.668088018810296,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'warn',
 'n_jobs': None,
 'penalty': 'l1',
 'random_state': None,
 'solver': 'warn',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}

可以看到此时最优超参数为C:1.67惩罚项选L1

12.3从多种学习算法中选择最佳模型

from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
np.random.seed(10)
iris = datasets.load_iris()
pip = Pipeline([('classifier', RandomForestClassifier())])
search_space = [{'classifier':[LogisticRegression()],
                 'classifier__penalty': ['l1', 'l2'],
                 'classifier__C': np.logspace(0, 4, 10)},
                {'classifier': [RandomForestClassifier()],
                 'classifier__n_estimators':[10, 100, 1000],
                 'classifier__max_features':[1, 2, 3]}]
gridsearch = GridSearchCV(pip, search_space, cv=5)
best_model = gridsearch.fit(features, target)
best_model.best_estimator_.get_params()
{'memory': None,  'steps': [('classifier', LogisticRegression(C=7.742636826811269))],  'verbose': False,  'classifier': LogisticRegression(C=7.742636826811269),  'classifier__C': 7.742636826811269,  'classifier__class_weight': None,  'classifier__dual': False,  'classifier__fit_intercept': True,  'classifier__intercept_scaling': 1,  'classifier__l1_ratio': None,  'classifier__max_iter': 100,  'classifier__multi_class': 'auto',  'classifier__n_jobs': None,  'classifier__penalty': 'l2',  'classifier__random_state': None,  'classifier__solver': 'lbfgs',  'classifier__tol': 0.0001,  'classifier__verbose': 0,  'classifier__warm_start': False}

对于该数据集,上述结果表明使用logistic回归的效果比随机森林更好。

全部评论
我发现c语言很多代码,人家python一句话就能解决
点赞 回复 分享
发布于 2022-08-15 20:42

相关推荐

07-17 12:14
门头沟学院 Java
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务