【python数据分析入门到高级】:日期型数据处理

在我们进行一些时间序列问题时,往往要对日期型数据进行分析处理,本章介绍一下如何使用python处理日期型数据

1. 将字符串转换成日期

# 导入相关库;
import pandas as pd 
import numpy as np
# 创建字符串
date_strings = np.array(['03-04-2005 11:35 PM',
                         '23-05-2010 12:01 AM',
                         '04-09-2009 09:09 PM'])
# 转换成datetime 类型的数据
[pd.to_datetime(date, format='%d-%m-%Y %I:%M %p') for date in date_strings]
[Timestamp('2005-04-03 23:35:00'),
 Timestamp('2010-05-23 00:01:00'),
 Timestamp('2009-09-04 21:09:00')]
# 我们还可以增加errors参数来处理错误
# 转换成datetime类型的数据
[pd.to_datetime(date, format='%d-%m-%Y %I:%M %p', errors = 'coerce') for date in date_strings]
[Timestamp('2005-04-03 23:35:00'),
 Timestamp('2010-05-23 00:01:00'),
 Timestamp('2009-09-04 21:09:00')]

当传入errors = 'coerce' 参数时,即使转换错误也不会报错,但是会将错误的值返回为Nat(缺失值)

2. 处理时区

一般而言,pandas的对象默认是没有时区的,不过我们也可以在创建对象时通过tz参数指定时区

import pandas as pd
# 创建一个dataframe
pd.Timestamp('2017-05-01 06:00:00', tz = 'Europe/London')
Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')
# 可以使用tz_locallize添加时区信息
data = pd.Timestamp('2017-05-01 06:00:00')
# 设置时区
data_in_london = data.tz_localize('Europe/London')
data_in_london
Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')
# 我们还可以使用tz_convert来转换时区

data_in_london.tz_convert('Asia/Chongqing')
Timestamp('2017-05-01 13:00:00+0800', tz='Asia/Chongqing')
# Series对象还可以对每一个元素应用tz_localiz和tz_convert
dates = pd.Series(pd.date_range('2002-02-02', periods=3, freq='M'))
# 设置时区
dates.dt.tz_localize('Asia/Chongqing')
0   2002-02-28 00:00:00+08:00
1   2002-03-31 00:00:00+08:00
2   2002-04-30 00:00:00+08:00
dtype: datetime64[ns, Asia/Chongqing]

3. 选择日期和时间

dataframe = pd.DataFrame()
dataframe['date'] = pd.date_range('2001-01-01 01:00:00', periods=100000, freq='H')
# 删选两个日期之间的观察值, 用 & 来表示且的关系
dataframe[(dataframe['date']>'2002-01-01 01:00:00') & (dataframe['date']<='2002-1-1 04:00:00')]
date
8761 2002-01-01 02:00:00
8762 2002-01-01 03:00:00
8763 2002-01-01 04:00:00
# 另一种方法,将date这一列设为索引,然后用loc删选
dataframe = dataframe.set_index(dataframe['date'])
dataframe.loc['2002-1-1 01:00:00':'2002-1-1 04:00:00']
date
date
2002-01-01 01:00:00 2002-01-01 01:00:00
2002-01-01 02:00:00 2002-01-01 02:00:00
2002-01-01 03:00:00 2002-01-01 03:00:00
2002-01-01 04:00:00 2002-01-01 04:00:00

4. 将数据切分成多个特征

df = pd.DataFrame()
df['date'] = pd.date_range('1/1/2001', periods=150, freq='w')
# 创建年月日时分的特征
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['hour'] = df['date'].dt.hour
df['minute'] = df['date'].dt.minute
df.head()
date year month day hour minute
0 2001-01-07 2001 1 7 0 0
1 2001-01-14 2001 1 14 0 0
2 2001-01-21 2001 1 21 0 0
3 2001-01-28 2001 1 28 0 0
4 2001-02-04 2001 2 4 0 0

5.计算两个日期之间的时间差

import pandas as pd
dataframe = pd.DataFrame()
dataframe['Arrived'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-04-2017')]
dataframe['left'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-06-2017')]
# 计算两个特征直接的时间间隔
dataframe['left'] - dataframe['Arrived']
0   0 days
1   2 days
dtype: timedelta64[ns]
全部评论
20200101改成2020-01-01这种形式定义日期格式为date,不要datetime,不知道怎么写,请不吝赐教
点赞 回复 分享
发布于 2023-03-02 01:05 广东
讲的很好。
点赞 回复 分享
发布于 2022-08-16 11:20

相关推荐

小鹏、大疆、米哈游、MinMax小鹏上午投的下午就约面,进度未免也太快了
蛇年行大运fff:哥们 盗贴有意思吗,我发xhs上的给你搬过来了😅😅😅
点赞 评论 收藏
分享
zYvv:双一流加大加粗再标红,然后广投。主要是获奖荣誉不够,建议开始不用追求大厂,去别的厂子刷下实习。
点赞 评论 收藏
分享
每晚夜里独自颤抖:你cet6就cet6,cet4就cet4,你写个cet证书等是什么意思。专业技能快赶上项目行数,你做的这2个项目哪里能提现你有这么多技能呢
点赞 评论 收藏
分享
评论
1
2
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务