【板子】常见几何
几个知识点:
- 直线的斜率可以通过 c++函数atan2(Δy,Δx) 求出,其返回的是弧度,即当斜率为90°时
atan2(90°)=1.57
- c++的sin(x),cos(x)这些函数都是使用弧度制的
3.点 顺时针旋转θ角度后的新坐标
//没有凸包
/*------------------ 二维几何 ------------------------------------------------------------------ */ const double eps=1e-8; const double inf=1e20; const double pi=acos(-1.0); const int maxp=1010;//点的个数 int sgn(double x) { if(fabs(x)<eps) return 0; if(x<0) return -1; else return 1; } //判断小数和0是否等于 struct Point{ double x,y; Point(){} Point(double _x,double _y){x=_x,y=_y;} void input(){scanf("%lf%lf",&x,&y);}//输入 void output(){printf("%.2f %.2f\n", x,y);} //输出 Point operator -(const Point &b)const {return Point(x-b.x,y-b.y);} Point operator+(const Point &b) const{ return Point(x + b.x, y + b.y); } Point operator *(const double &k)const{return Point(x*k,y*k);} Point operator /(const double &k)const{return Point(x/k,y/k);} bool operator ==(Point b)const {return sgn(x-b.x)==0 &&sgn(y-b.y)==0;} bool operator <(Point b)const{return sgn(x-b.x)==0?sgn(y-b.y)<0:x<b.x;} double operator ^(const Point &b)const{return x*b.y-y*b.x;} //叉积 double operator *(const Point &b)const{return x*b.x+y*b.y;} //点积 double len(){return hypot(x,y);} //返回长度 double len2(){return x*x+y*y;} //返回长度的平方 double distance(Point p){return hypot(x-p.x,y-p.y);} //两点之间的距离 double rad(Point a,Point b){ Point p=*this; return fabs(atan2( fabs((a-p)^(b-p)) , (a-p)^(b-p) )); }//求pa,pb之间的夹角 Point trunc(double r){ double l=len(); if(!sgn(l)) return *this; r/=l; return Point(x*r,y*r); }//化为长度为r的向量 Point rotLeft(){return Point(-y,x);} //逆时针旋转90° Point rotRight(){return Point(y,-x);} //顺时针旋转90° Point rotate(Point p,double angle){ Point v=(*this)-p; double c=cos(angle),s=sin(angle); return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c); }//绕p点逆时针旋转angle }; typedef Point Vector; typedef Point point; double area(Point x,Point y,Point z){ double xy=x.distance(y); double xz=x.distance(z); double yz=y.distance(z); double d=(xy+xz+yz)/2;//半周长p return sqrt(d*(d-xy)*(d-xz)*(d-yz)); }//三角形面积 double area(Point a,Point b,Point c){ return fabs(a.x*b.y+a.y*c.x+b.x*c.y - a.x*c.y-a.y*b.x-b.y*c.x)/2; }//三角形面积 /*------------------------直线 ------------------------------------------------------------------ */ struct Line{ Point s,e; Line(){} Line(Point _s,Point _e){s=_s;e=_e;} bool operator == (Line v){return (s==v.s)&&(e==v.e);} Line(Point p,double angle){ s=p; if(sgn(angle-pi/2)==0) e=(s+Point(0,1)); else e=(s+Point(1,tan(angle))); }//根据一个点和倾斜角确定直线 0<=angle<pi Line(double a,double b,double c) { if(sgn(a)==0){ s=Point(0,-c/b); e=Point(1,-c/b); } else if(sgn(b)==0){ s=Point(-c/a,0); e=Point(-c/a,1); } else{ s = Point(0, -c / b); e = Point(1, (-c - a) / b); } }//求出直线ax+by+c=0; void input(){s.input();e.input();}//输入 //void adjust(){if(e<s) swap(s,e);} //emmm 我不是很喜欢这个 double length(){return s.distance(e);} //求线段长度 double angle(){ double k=atan2(e.y-s.y,e.x-s.x); if(sgn(k)<0)k+=pi; if(sgn(k-pi)==0) k-=pi; return k; }//返回直线倾斜角 0<=angle<pi int relation(Point p){ int c=sgn((p-s)^(e-s)); if(c<0) return 1; //点在直线的左侧 else if(c>0) return 2;//点在直线的右侧 else return 3;//点在直线上 }//判断点与直线的关系 bool point_on_seg(Point p){ return sgn((p-s)^(e-s))==0 && sgn((p-s)*(p-e))<=0 ; }//点在线段上的判断 bool parallel(Line v){ return sgn((e-s)^(v.e-v.s))==0; }//两向量(对应的直线)平行 int seg_cross_seg(Line v){ int d1=sgn((e-s)^(v.s-s)); int d2=sgn((e-s)^(v.e-s)); int d3=sgn((v.e-v.s)^(s-v.s)); int d4=sgn((v.e-v.s)^(e-v.s)); if((d1^d2)==-2 && (d3^d4)==-2) return 2; //规范相交 return (d1==0 && sgn((v.s-s)*(v.s-e))<=0)|| (d2==0 && sgn((v.e-s)*(v.e-e))<=0)|| (d3==0 && sgn((s-v.s)*(s-v.e))<=0)|| (d4==0 && sgn((e-v.s)*(e-v.e))<=0); //返回 1 非规范相交 0 不相交 } int line_cross_seg(Line v){ int d1 = sgn((e-s)^(v.s-s)); int d2 = sgn((e-s)^(v.e-s)); if((d1^d2)==-2) return 2;//规范相交 return (d1==0||d2==0);//返回 1 非规范相交 0 不想交 }//直线和线段相交判断 int line_cross_line(Line v){ if((*this).parallel(v)) return v.relation(s)==3;//返回 1重合 0 平行 return 2;//相交 }//判断直线与直线之间的关系 Point cross_point(Line v){ double a1 = (v.e-v.s)^(s-v.s); double a2 = (v.e-v.s)^(e-v.s); return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1)); }//求两直线的交点 前提:要保证直线不平行或重合 double dis_point_to_line(Point p){ return fabs((p-s)^(e-s))/length(); }//点到直线的距离 double dis_point_to_seg(Point p){ if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0) return min(p.distance(s),p.distance(e)); return dis_point_to_line(p); }//点到线段的距离 double dis_seg_to_seg(Line v){ return min(min(dis_point_to_seg(v.s),dis_point_to_seg(v.e)),min(v.dis_point_to_seg(s),v.dis_point_to_seg(e))); }//线段到线段的距离 前提:两线段不相交 相交距离=0 Point line_prog(Point p){ return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) ); }//点p在直线上的投影 Point symmetry_point(Point p){ Point q = line_prog(p); return Point(2*q.x-p.x,2*q.y-p.y); }//点p关于直线的对称点 }; typedef Line line; typedef Line segment; typedef Line seg; /*------------------------------------------------------------------ 圆 ------------------------------------------------------------------ */ struct circle{ Point p;//圆心 double r;//半径 circle(){}circle(Point _p,double _r){p = _p;r = _r;} circle(double x,double y,double _r){p = Point(x,y);r = _r;} circle(Point a,Point b,Point c){ Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotLeft())); Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotLeft())); p = u.cross_point(v);r = p.distance(a); }//三角形的外接圆 circle(Point a,Point b,Point c,bool non){ //这里的参数 non 没有作用 只是为了和上面的外接圆函数区别 Line u,v; double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a.x); u.s = a; u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2)); v.s = b; m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x); v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2)); p = u.cross_point(v);r = Line(a,b).dis_point_to_seg(p); }//三角形的内切圆 void input(){p.input();scanf("%lf",&r);}//输入 void output(){printf("%.2lf %.2lf %.2lf\n",p.x,p.y,r);}//输出 bool operator == (circle v){return (p==v.p) && sgn(r-v.r)==0;} bool operator < (circle v)const{return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0));} double area(){return pi*r*r;} //圆的面积 double circumference(){return 2*pi*r;} //圆的周长 int relation(Point b){ double dst = b.distance(p); if(sgn(dst-r) < 0) return 2;//在圆内 else if(sgn(dst-r)==0) return 1;//在圆上 return 0;//在圆外 }//点与圆的关系 int relation_seg(Line v){ double dst = v.dis_point_to_seg(p); if(sgn(dst-r) < 0) return 2;//相交 else if(sgn(dst-r) == 0) return 1;//相切 return 0;//相离 }//线段和圆的关系 比较的是圆心到线段距离的 int relation_line(Line v){ double dst = v.dis_point_to_line(p); if(sgn(dst-r) < 0)return 2;//相交 else if(sgn(dst-r) == 0)return 1;//相切 return 0;//相离 }//直线和圆的关系 int relation_circle(circle v){ double d = p.distance(v.p); if(sgn(d-r-v.r) > 0)return 5;//相离 if(sgn(d-r-v.r) == 0)return 4;//外切 double l = fabs(r-v.r); if(sgn(d-r-v.r)<0 && sgn(d-l)>0)return 3;//相交 if(sgn(d-l)==0)return 2;//内切 if(sgn(d-l)<0)return 1;//内含 }//圆与圆的关系 int point_cross_circle(circle v,Point &p1,Point &p2){ int rel = relation_circle(v); if(rel == 1 || rel == 5)return 0;//两个圆之间没有交点 double d = p.distance(v.p); double l = (d*d+r*r-v.r*v.r)/(2*d); double h = sqrt(r*r-l*l); Point tmp = p + (v.p-p).trunc(l); p1 = tmp + ((v.p-p).rotLeft().trunc(h)); p2 = tmp + ((v.p-p).rotRight().trunc(h)); if(rel == 2 || rel == 4)return 1;//有1个交点 return 2;//有两个交点 }//求两个圆的交点 int point_cross_line(Line v,Point &p1,Point &p2){ if(!(*this).relation_line(v))return 0; Point a = v.line_prog(p); double d = v.dis_point_to_line(p); d = sqrt(r*r-d*d); if(sgn(d) == 0){ p1 = a; p2 = a; return 1; } p2 = a + (v.e-v.s).trunc(d); p1 = a - (v.e-v.s).trunc(d); return 2; }//直线和圆的交点 返回交点的个数 int get2_circle(Point a,Point b,double r1,circle &c1,circle &c2){ circle x(a,r1),y(b,r1); int t = x.point_cross_circle(y,c1.p,c2.p); if(!t)return 0; c1.r = c2.r = r; return t; }//得到两个过a,b两点且半径为r1的圆 int get_circle(Line u,Point q,double r1,circle &c1,circle &c2){ double dis = u.dis_point_to_line(q); if(sgn(dis-r1*2)>0)return 0; if(sgn(dis) == 0){ c1.p = q + ((u.e-u.s).rotLeft().trunc(r1)); c2.p = q + ((u.e-u.s).rotRight().trunc(r1)); c1.r = c2.r = r1;return 2; } Line u1 = Line((u.s + (u.e-u.s).rotLeft().trunc(r1)),(u.e + (u.e-u.s).rotLeft().trunc(r1))); Line u2 = Line((u.s + (u.e-u.s).rotRight().trunc(r1)),(u.e + (u.e-u.s).rotRight().trunc(r1))); circle cc = circle(q,r1); Point p1,p2; if(!cc.point_cross_line(u1,p1,p2)) cc.point_cross_line(u2,p1,p2); c1 = circle(p1,r1); if(p1 == p2){ c2 = c1;return 1; } c2 = circle(p2,r1); return 2; }//得到与直线u相切 且过点q 半径为r1的圆 int get_circle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){ if(u.parallel(v))return 0;//两直线平行 Line u1 = Line(u.s + (u.e-u.s).rotLeft().trunc(r1),u.e + (u.e-u.s).rotLeft().trunc(r1)); Line u2 = Line(u.s + (u.e-u.s).rotRight().trunc(r1),u.e + (u.e-u.s).rotRight().trunc(r1)); Line v1 = Line(v.s + (v.e-v.s).rotLeft().trunc(r1),v.e + (v.e-v.s).rotLeft().trunc(r1)); Line v2 = Line(v.s + (v.e-v.s).rotRight().trunc(r1),v.e + (v.e-v.s).rotRight().trunc(r1)); c1.r = c2.r = c3.r = c4.r = r1; c1.p = u1.cross_point(v1); c2.p = u1.cross_point(v2); c3.p = u2.cross_point(v1); c4.p = u2.cross_point(v2); return 4; }//求同时与直线u、v相切 且半径为r1的直线 返回生成的圆的个数 int get_circle(circle cx,circle cy,double r1,circle &c1,circle &c2){ circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r); int t = x.point_cross_circle(y,c1.p,c2.p); if(!t)return 0; c1.r = c2.r = r1; return t; }//同时与不相交圆cx cy相切 且半径为r1的圆 最多两个 int tangent_line(Point q,Line &u,Line &v){ int x = relation(q); if(x == 2)return 0; if(x == 1){ u = Line(q,q + (q-p).rotLeft()); v = u; return 1; } double d = p.distance(q); double l = r*r/d; double h = sqrt(r*r-l*l); u = Line(q,p + ((q-p).trunc(l) + (q-p).rotLeft().trunc(h))); v = Line(q,p + ((q-p).trunc(l) + (q-p).rotRight().trunc(h))); return 2; }//过一点作圆的切线 可能有两条 double area_circle(circle v){ int rel = relation_circle(v); if(rel >= 4)return 0.0; if(rel <= 2)return min(area(),v.area()); double d = p.distance(v.p); double hf = (r+v.r+d)/2.0; double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d)); double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d)); a1 = a1*r*r;double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d)); a2 = a2*v.r*v.r; return a1+a2-ss; }//求两圆相交的面积 double area_triangle(Point a,Point b){ if(sgn((p-a)^(p-b)) == 0)return 0.0; Point q[5]; int len = 0; q[len++] = a; Line l(a,b); Point p1,p2; if(point_cross_line(l,q[1],q[2])==2){ if(sgn((a-q[1])*(b-q[1]))<0) q[len++] = q[1]; if(sgn((a-q[2])*(b-q[2]))<0) q[len++] = q[2]; } q[len++] = b; if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0) swap(q[1],q[2]); double res = 0; for(int i = 0;i < len-1;i++){ if(relation(q[i])==0||relation(q[i+1])==0){ double arg = p.rad(q[i],q[i+1]); res += r*r*arg/2.0; }else{ res += fabs((q[i]-p)^(q[i+1]-p))/2.0; } } return res; }//求圆和三角形pab相交的面积 };
三维
/*------------------------ 三维几何 ------------------------------------------------------------------ */ #include <bits/stdc++.h> using namespace std; const double eps = 1e-8; int sgn(double x){ if(fabs(x) < eps)return 0; if(x < 0)return -1; else return 1; } /*--------------------- 点 ------------------------------------------------------------------ */ struct Point3{ double x,y,z; Point3(double _x = 0,double _y = 0,double _z = 0){x = _x;y = _y;z = _z;} void input(){scanf("%lf%lf%lf",&x,&y,&z);}//输入 void output(){printf("%.2lf %.2lf %.2lf\n",x,y,z);}//输出 Point3 operator +(const Point3 &b)const{return Point3(x+b.x,y+b.y,z+b.z);} Point3 operator -(const Point3 &b)const{return Point3(x-b.x,y-b.y,z-b.z);} Point3 operator *(const double &k)const{return Point3(x*k,y*k,z*k);} Point3 operator /(const double &k)const{return Point3(x/k,y/k,z/k);} bool operator ==(const Point3 &b)const{return sgn(x-b.x) == 0 && sgn(y-b.y) == 0 && sgn(z-b.z) == 0;} bool operator <(const Point3 &b)const{return sgn(x-b.x)==0?(sgn(y-b.y)==0?sgn(z-b.z)<0:y<b.y):x<b.x;} double len(){return sqrt(x*x+y*y+z*z);} double len2(){return x*x+y*y+z*z;} double distance(const Point3 &b)const{return sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)+(z-b.z)*(z-b.z));} double operator *(const Point3 &b)const{return x*b.x+y*b.y+z*b.z;}//点乘 Point3 operator ^(const Point3 &b)const {return Point3(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x);}//叉乘 double rad(Point3 a,Point3 b){ Point3 p = (*this); return acos( ( (a-p)*(b-p) )/ (a.distance(p)*b.distance(p)) ); }//求pa pb之间的角度 Point3 trunc(double r){ double l = len(); if(!sgn(l))return *this; r /= l; return Point3(x*r,y*r,z*r); }//变换长度 }; typedef Point3 Vector3; /*------------------------- 直线 ------------------------------------------------------------------ */ struct Line3{ Point3 s,e; Line3(){} Line3(Point3 _s,Point3 _e){s = _s;e = _e;} bool operator ==(const Line3 v){return (s==v.s)&&(e==v.e);} void input(){s.input();e.input();}//输入 double length(){return s.distance(e);} double dis_point_to_line(Point3 p){return ((e-s)^(p-s)).len()/s.distance(e);} //点到直线距离 double dis_point_to_seg(Point3 p){ if(sgn((p-s)*(e-s)) < 0 || sgn((p-e)*(s-e)) < 0) return min(p.distance(s),e.distance(p)); }//点到线段距离 Point3 line_prog(Point3 p){ return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) ); }//返回点p在直线上的投影 Point3 rotate(Point3 p,double ang){ if(sgn(((s-p)^(e-p)).len()) == 0)return p; Point3 f1 = (e-s)^(p-s); Point3 f2 = (e-s)^(f1); double len = ((s-p)^(e-p)).len()/s.distance(e); f1 = f1.trunc(len); f2 = f2.trunc(len); Point3 h = p+f2; Point3 pp = h+f1; return h + ((p-h)*cos(ang)) + ((pp-h)*sin(ang)); }//p绕此向量逆时针arg角度 bool point_on_seg(Point3 p){return sgn( ((s-p)^(e-p)).len() ) == 0 && sgn((s-p)*(e-p)) == 0;} //判断点是否在直线上 }; /*----------------------------- 平面 ------------------------------------------------------------------ */ struct Plane{ Point3 a,b,c,o;//`平面上的三个点,以及法向量` Plane(){} Plane(Point3 _a,Point3 _b,Point3 _c){a = _a;b = _b;c = _c;o = pvec();} Point3 pvec(){return (b-a)^(c-a);} Plane(double _a,double _b,double _c,double _d){ o = Point3(_a,_b,_c); if(sgn(_a) != 0) a = Point3((-_d-_c-_b)/_a,1,1); else if(sgn(_b) != 0) a = Point3(1,(-_d-_c-_a)/_b,1); else if(sgn(_c) != 0) a = Point3(1,1,(-_d-_a-_b)/_c); }//求平面ax+by+cz+d = 0 bool point_on_plane(Point3 p){return sgn((p-a)*o) == 0;} //判断点是否在平面上 double angle_plane(Plane f){return acos(o*f.o)/(o.len()*f.o.len());} //求两平面夹角 int cross_line(Line3 u,Point3 &p){ double x = o*(u.e-a); double y = o*(u.s-a); double d = x-y; if(sgn(d) == 0)return 0; p = ((u.s*x)-(u.e*y))/d; return 1; }//`平面和直线的交点,返回值是交点个数` Point3 point_to_plane(Point3 p) { Line3 u = Line3(p,p+o); cross_line(u,p); return p; }//求点到平面最近点(也就是投影) int cross_plane(Plane f,Line3 &u){ Point3 oo = o^f.o; Point3 v = o^oo; double d = fabs(f.o*v); if(sgn(d) == 0)return 0; Point3 q = a + (v*(f.o*(f.a-a))/d); u = Line3(q,q+oo); return 1; } //求平面和平面的交线 };
原先的几何板子
#include <bits/stdc++.h> using namespace std; typedef unsigned long long ull; typedef long long ll; typedef __int64 LL; typedef pair<int,int> pii; typedef pair<ll,ll> pll; const int INF=0x3f3f3f3f; const ll inf=0x3f3f3f3f3f3f3f3f;//inf=(1ll<<60) const int mod=1e9+7; const int base =131; const int N=1e6+10; const double eps=1e-8; const double pi=acos(-1.0); int dcmp(double x,double y) { if(fabs(x-y)<eps) return 0; else return x<y?-1:1; } //判断x是否等于y int sgn(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } //判断x是否等于0 struct Point { double x,y; Point(){} Point(double x,double y):x(x),y(y){} //向量的运算操作 Point operator +(Point B){return Point(x+B.x,y+B.y);} Point operator -(Point B){return Point(x-B.x,y-B.y);} Point operator *(double k){return Point(x*k,y*k);} Point operator /(double k){return Point(x/k,y/k);} bool operator ==(Point B){return sgn(x-B.x)==0 &&sgn(y-B.y)==0;} bool operator <(Point B){ //比较两个点 用于凸包计算 return sgn(x-B.x)<0 || (sgn(x-B.x)==0 && sgn(y-B.y)<0); } };//二维 点 typedef Point Vector; double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;} //向量点积 //dot(a,b)>0 说明 a,b夹角为锐角 //dot(a,b)<0 钝角 //dot(a,b)=0 直角 double Len(Vector A){return sqrt(Dot(A,A));} //求向量A的长度 double Dist(Point A,Point B) { return (A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y); } double Distance(Point A,Point B) { return hypot(A.x-B.x,A.y-B.y); } //计算两点之间的距离 hypot计算三角形的斜边长 double Len2(Vector A) { return Dot(A,A); } //求向量A的长度的平方 double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } //AXB的叉积 注意 叉积有顺序的 //AXB>0 B在A的逆时针方向 //AXB<0 B在A的顺时针方向 //AXB=0 B与A共线,可能是同方向的 也可能是反方向的 double Area2(Point A,Point B,Point C) { return fabs(Cross(B-A,C-A)); } //计算a,b,c三个点形成的平行四边形的面积 Vector Rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } //将A向量逆时针旋转rad度 当rad=90°时 rad=pi/2 Vector Normal(Vector A) { return Vector(-A.y/Len(A),A.x/Len(A)); } //求单位法向量 bool Parallel(Vector A,Vector B) { return Cross(A,B)==0; } //判断向量是否平行 Vector trunc(Vector A, double len){ // len=1时 求的就是单位向量 double l=hypot(A.x,A.y); if(!sgn(l)) return A; len/=l; return Point(A.x*len,A.y*len); }//求模长为len的向量 /*--------------------------- 直线 ------------------------------------------------------------------ */ struct Line { Point p1,p2; Line(){} Line(Point p1,Point p2):p1(p1),p2(p2){} Line(Point p,double angle){ //0<=angle<pi p1=p; if(sgn(angle-pi/2)==0)p2=(p1+Point(0,1)); else p2=(p1+Point(1,tan(angle))); }//根据一个点和一个倾斜角度 确定一条直线 Line(double a,double b,double c) { if(sgn(a)==0){ p1=Point(0,-c/b); p2=Point(1,-c/b); } else if(sgn(b)==0) { p1=Point(-c/a,0); p2=Point(-c/a,1); } else { p1 = Point(0, -c / b); p2 = Point(1, (-c - a) / b); } //求出直线ax+by+c=0; } }; /*--------------------------------- 线段------------------------------------------------------------------ */ typedef Line Segment; int Point_Line_relation(Point p,Line v) { int c=sgn(Cross(p-v.p1,v.p2-v.p1)); if(c<0) return 1;//点在直线的左边 if(c>0) return 2;//点在直线的右边 return 0;//点在直线上 }//判断点与直线的位置关系 bool Point_on_seg(Point p,Segment v) { return sgn(Cross(p-v.p1,v.p2-v.p1))==0&& sgn(Dot(p-v.p1,p-v.p2))<=0; } //判断点与线段的关系 //0 点不在线段上 //1 点在直线上 double Dis_point_line(Point p,Line v) { return fabs(Cross(p-v.p1,v.p2-v.p1))/Distance(v.p1,v.p2); }//求点到直线的距离 Point Point_line_proj(Point p,Line v) { double kk=Dot(v.p2-v.p1,p-v.p1)/Len2(v.p2-v.p1); return v.p1+(v.p2-v.p1)*kk; }//求点在直线上的投影 Point Point_line_symmetry(Point p,Line v) { Point q=Point_line_proj(p,v);//计算点在直线上的投影 return Point(2*q.x-p.x,2*q.y-p.y); }//求点关于直线的对称点 double Dis_poinst_seg(Point p,Segment v) { if(sgn(Dot(p-v.p1,v.p2-v.p1))<0 || sgn(Dot(p-v.p1,v.p1-v.p2))<0) return min(Distance(p,v.p1),Distance(p,v.p2));//Distance 计算两点之间的距离 return Dis_point_line(p,v);//点的投影在线段上 } //求点到线段的距离 int Line_relation(Line v1,Line v2) { if(sgn(Cross(v1.p2-v1.p1,v2.p2-v2.p1))==0) { if(Point_Line_relation(v1.p1,v2)==0) return 1;//重合 else return 0;//平行 } else return 2;//相交 }//判断两条直线的关系 Point Cross_point(Point a,Point b,Point c,Point d)//Line ab ,Line cd { double s1=Cross(b-a,c-a); double s2=Cross(b-a,d-a); //前提!保证s2-s1!=0 即ab cd不共线且不平行 return Point(c.x*s2-d.x*s1,c.y*s2-d.y*s1)/(s2-s1); }//求两条直线的交点 bool Cross_segment(Point a,Point b,Point c,Point d)//Line ab ,Line cd { double c1=Cross(b-a,c-a),c2=Cross(b-a,d-a); double d1=Cross(d-c,a-c),d2=Cross(d-c,b-c); return sgn(c1)*sgn(c2)<0 && sgn(d1)*sgn(d2)<0; //1-相交 0-不相交 }//判断两个线段是否相交 Point Cross_segment_point(Segment v1,Segment v2) { }//求两个线段的交点 /*------------------------------------------------------------------ 圆------------------------------------------------------------------ */ struct Circle { Point c; double r; Circle(){} Circle(Point c,double r):c(c),r(r){} Circle(double x,double y,double _r){c=Point(x,y),r=_r;} }; int Point_circle_relation(Point p,Circle C) { double dst=Distance(p,C.c); if(sgn(dst-C.r)<0)return 0;//点在圆内 if(sgn(dst-C.r)==0)return 1;//点在圆上 return 2;//点在圆外 }//判断点与圆的关系 int Line_circle_relation(Line v,Circle C) { double dst=Dis_point_line(C.c,v); if(sgn(dst-C.r)<0)return 0;//直线与圆相交 if(sgn(dst-C.r)==0)return 1;//直线与圆相切 return 2;//直线在圆外 }//判断直线与圆的位置关系 int Seg_circle_relation(Segment v,Circle C) { double dst=Dis_point_line(C.c,v); if(sgn(dst-C.r)<0)return 0;//线段与圆相交 if(sgn(dst-C.r)==0)return 1;//线段与圆相切 return 2;//线段在圆外 }//判断线段与圆的位置关系 int Line_cross_circle(Line v,Circle C,Point &point_a,Point& point_b) { if(Line_circle_relation(v,C)==2)return 0;//无交点 Point q=Point_line_proj(C.c,v);//求圆心在直线上的投影点 double dst=Dis_point_line(C.c,v);//圆心到直线的距离 double kk=sqrt(C.r*C.r-dst*dst); if(sgn(kk)==0) { point_a=q; point_b=q; return 1;//一个交点 直线与圆相切 } Point nn=(v.p2-v.p1)/Len(v.p2-v.p1);//单位向量 point_a=q+nn*kk; point_b=q-nn*kk; return 2;//两个交点 }//求直线与圆的交点 pa,pb是交点 返回交点的个数 /*------------------------------------------------------------------ 三维空间点和向量------------------------------------------------------------------ */ struct Point3 { double x,y,z; Point3(){} Point3(double x,double y,double z):x(x),y(y),z(z){} //向量的运算操作 Point3 operator +(Point3 B){return Point3(x+B.x,y+B.y,z+B.z);} Point3 operator -(Point3 B){return Point3(x-B.x,y-B.y,z-B.z);} Point3 operator *(double k){return Point3(x*k,y*k,z*k);} Point3 operator /(double k){return Point3(x/k,y/k,z/k);} bool operator ==(Point3 B){return sgn(x-B.x)==0 && sgn(y-B.y)==0 && sgn(z-B.z)==0;} };//三维 点和向量 typedef Point3 Vector3; double Distance(Point3 A,Point3 B) { return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y)+(A.z-B.z)*(A.z-B.z)); }//求两点之间的距离 double Dot(Vector3 A,Vector3 B) { return A.x*B.x+A.y*B.y+A.z*B.z; } //A·B的点积 //dot(a,b)>0 说明 a,b夹角为锐角 //dot(a,b)<0 钝角 //dot(a,b)=0 直角 double Len(Vector3 A) { return sqrt(Dot(A,A)); } //求向量A的长度 double Len2(Vector3 A) { return Dot(A,A); } //求向量A的长度的平方 double Angle(Vector3 A,Vector3 B) { return acos(Dot(A,B)/Len(A)/Len(B)); } //求向量A B的夹角 Vector3 Cross(Vector3 A,Vector3 B) { return Point3(A.y*B.z-A.z*B.y,A.z*B.x-A.x*B.z,A.x*B.y-A.y*B.x); } //三维叉积 double Area2(Point3 A,Point3 B,Point3 C) { return Len(Cross(B-A,C-A)); } //求三点形成的平行四边形=三角形的面积*2 /*------------------------------------------------------------------空间直线------------------------------------------------------------------ */ struct Line3 { Point3 p1,p2; Line3(){} Line3(Point3 p1,Point3 p2):p1(p1),p2(p2){} }; typedef Line3 Segment3; /*------------------------------------------------------------------ 平面 ------------------------------------------------------------------ */ struct Plane { Point3 p1,p2,p3; Plane(){} Plane(Point3 p1,Point3 p2,Point3 p3):p1(p1),p2(p2),p3(p3){} };//平面 /*--------------------------------------------复数 ---------------------------------------*/ struct Complex{ double a,b; Complex(){} Complex(double a,double b):a(a),b(b){} Complex operator + (Complex t){return Complex(a+t.a,b+t.b);} Complex operator - (Complex t){return Complex(a-t.a,b-t.b);} Complex operator * (Complex t){// (ac-bd)+(ad+bc)i double c=t.a,d=t.b; return Complex(a*c-b*d,b*c+a*d); } Complex operator / (Complex t){// (ac+bd)/(c^2+d^2) + (bc-ad)/(c^2+d^2)i double c=t.a,d=t.b; return Complex((a*c+b*d)/(c*c+d*d),(b*c-a*d)/(c*c+d*d)); } }; double Mo(Complex t){ //求模长 return sqrt(t.a*t.a+t.b*t.b); }