【每日一题】加分二叉树 题解

加分二叉树

https://ac.nowcoder.com/acm/problem/16681

Description

 一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第j个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

 subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数

 若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。 试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。
要求输出:
(1)tree的最高加分
(2)tree的前序遍历

Solution

按照题意,很容易想到分治做法,构造一个函数 是求区间 的最优解
然后由 subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数
可以得到 其中 中的一个节点
那么最终答案就是 , 类似于记忆化搜索的一种思想去解决
然后怎么输出前序遍历的结果呢?我们在记忆化搜索的时候维护一个
代表区间 的最优值取的是节点
那么我们前序遍历的时候只需要遍历 , ,
写一个函数递归输出即可

Code

#include<bits/stdc++.h>

typedef long long ll;

using namespace std;

const ll mod = 1e9 + 7;
const int N = 2e5 + 5;
ll a[35];
ll dp[35][35];
int root[35][35];
ll solve(int l, int r) {
  if(dp[l][r]) return dp[l][r];
  if(l == r) return a[l];
  if(r < l) return 1;
  for(int i = l; i <= r; i++) {
    ll p = solve(l, i - 1) * solve(i + 1, r) + a[i];
    if(p > dp[l][r]) {
      dp[l][r] = p;
      root[l][r] = i;
    }
  }
  return dp[l][r];
}
void print(int l, int r) {
  if(l > r) return ;
  if(l == r) {
    cout << l << ' ';
    return ;
  }
  cout << root[l][r]<< ' ';
  print(l, root[l][r] - 1);
  print(root[l][r] + 1, r);
}
int main() {
  int n;
  cin >> n;
  for(int i = 1; i <= n; i++) cin >> a[i];
  dp[1][n] = solve(1, n);
  cout << dp[1][n] << "\n";
  print(1, n);
  return 0;
}
Kurisu与牛客的每日一题 文章被收录于专栏

每日一题

全部评论

相关推荐

如题,他是要劝退我了吗
椛鸣:根据你的时间 来给你安排任务 如果你时间长 可能会参与到一些长期的项目 时间短 那就只能做点零工
点赞 评论 收藏
分享
king122:专业技能不要写这么多,熟悉和熟练你经不住问,排版有些难看,中间的空隙搞小一点,项目描述的话感觉是从课程中抄下来的,改一改吧,不然烂大街了,每个项目都写一两点,用什么技术实现了什么难点,然后再写一些数字上去像时间又花了90%这样,这样面试会多一些,如果觉得自己的项目还是不够用的话,我有几个大厂最近做过的实习项目,感兴趣的话可以看我简介中的项目地址
点赞 评论 收藏
分享
05-20 21:57
已编辑
门头沟学院 Java
喜欢吃卤蛋的悲伤蛙在提需求:建信融通没消息吧,我2说有实习挂简历不理了
点赞 评论 收藏
分享
评论
3
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务