杂模板
inline int rd() { int data = 0; int f = 1; char ch = getchar(); while(ch < '0'||ch > '9') { if(ch == '-') f = -1; ch = getchar(); } while(ch >= '0'&&ch <= '9') { data = (data<<3) + (data<<1) + ch - '0'; ch = getchar(); } return f * data; }
模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p
(a – b) % p = (a % p – b % p) % p
(a * b) % p = (a % p * b % p) % p
ab % p = ((a % p)b) % p
结合率:
((a+b) % p + c) % p = (a + (b+c) % p) % p
struct node { int to; int w; int next; }edge[100005]; int head[100005]; int cnt=0; void add(int u,int v,int w) { edge[u].to=v; edge[u].w=w; edge[u].next=head[u]; head[u]=cnt++; }
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define ll long long #define ull unsigned long long #define rint register int #define rep(i, l, r) for (rint i = l; i <= r; i++) #define per(i, l, r) for (rint i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); }字典树模板
int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量 // 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }哈希表模板
(1) 拉链法 int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; } (2) 开放寻址法 int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }重载操作符
bool operator < (const node &a) const { if(this->mark==a.mark) { return this->id<a.id; } return this->mark>b.mark; }字符串的进制转换
string s = "123456"; int t = strtol(s.c_str(), NULL, 10); cout << t;
2.lower_bound:查找第一个大于或等于某个元素的位置。
a.函数模板:lower_bound(arr[],arr[]+size , indx):
b.参数说明:
arr[]: 数组首地址
size:数组元素个数
indx:需要查找的值
c.函数功能: 函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置(注意是地址)。如果所有元素都小于val,则返回last的位置
d.举例如下:
一个数组number序列为:4,10,11,30,69,70,96,100.设要插入数字3,9,111.pos为要插入的位置的下标,则
/*注意因为返回值是一个指针,所以减去数组的指针就是int变量了*/
pos = lower_bound( number, number + 8, 3) - number,pos = 0.即number数组的下标为0的位置。
pos = lower_bound( number, number + 8, 9) - number, pos = 1,即number数组的下标为1的位置(即10所在的位置)。
pos = lower_bound( number, number + 8, 111) - number, pos = 8,即number数组的下标为8的位置(但下标上限为7,所以返回最后一个元素的下一个元素)。
e.注意:函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置。如果所有元素都小于val,则返回last的位置,且last的位置是越界的!
返回查找元素的第一个可安插位置,也就是“元素值>=查找值”的第一个元素的位置
3.upper_bound:查找第一个大于某个元素的位置。
a.函数模板:upper_bound(arr[],arr[]+size , indx):
b.参数说明:
arr[]: 数组首地址
size:数组元素个数
indx:需要查找的值
c.函数功能:函数upper_bound()返回的在前闭后开区间查找的关键字的上界,返回大于val的第一个元素位置
例如:一个数组number序列1,2,2,4.upper_bound(2)后,返回的位置是3(下标)也就是4所在的位置,同样,如果插入元素大于数组中全部元素,返回的是last。(注意:数组下标越界)
void print(__int128 x) { if(x < 0) {putchar('-');x = -x;} if(x/10) print(x/10); putchar(x%10+'0'); }
bool isPowerOfTwo(int n) { //判断这个值是否是2的幂 return (n & (n - 1)) == 0; }