数据结构
平衡二叉树(AVL树):
平衡二叉树又称为AVL树,是一种特殊的二叉排序树。其左右子树都是平衡二叉树,且左右子树高度之差的绝对值不超过1。一句话表述为:以树中所有结点为根的树的左右子树高度之差的绝对值不超过1。将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF,那么平衡二叉树上的所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。
红黑树:
红黑树是一种二叉查找树,但在每个节点增加一个存储位表示节点的颜色,可以是红或黑(非红即黑)。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍,因此,红黑树是一种弱平衡二叉树,相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索,插入,删除操作较多的情况下,通常使用红黑树。
性质:
- 每个节点非红即黑
- 根节点是黑的;
- 每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的;
- 如果一个节点是红色的,则它的子节点必须是黑色的。
- 对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点;
B+树
B+是一种多路搜索树,主要为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,每个节点的可以有多个孩子,并且按照关键字大小有序排列。所有记录节点都是按照键值的大小顺序存放在同一层的叶节点中。相比B树,其具有以下几个特点:
- b+树的中间节点不保存数据,所以磁盘页能容纳更多节点元素,更“矮胖”;
- b+树查询必须查找到叶子节点,b树只要匹配到即可不用管元素位置,因此b+树查找更稳定(并不慢);
- 对于范围查找来说,b+树只需遍历叶子节点链表即可,b树却需要重复地中序遍历,如下两图:
top K问题
1、直接全部排序(只适用于内存够的情况)
当数据量较小的情况下,内存中可以容纳所有数据。则最简单也是最容易想到的方法是将数据全部排序,然后取排序后的数据中的前K个。
这种方法对数据量比较敏感,当数据量较大的情况下,内存不能完全容纳全部数据,这种方法便不适应了。即使内存能够满足要求,该方法将全部数据都排序了,而题目只要求找出top K个数据,所以该方法并不十分高效,不建议使用。
2、快速排序的变形 (只使用于内存够的情况)
这是一个基于快速排序的变形,因为第一种方法中说到将所有元素都排序并不十分高效,只需要找出前K个最大的就行。
这种方法类似于快速排序,首先选择一个划分元,将比这个划分元大的元素放到它的前面,比划分元小的元素放到它的后面,此时完成了一趟排序。如果此时这个划分元的序号index刚好等于K,那么这个划分元以及它左边的数,刚好就是前K个最大的元素;如果index > K,那么前K大的数据在index的左边,那么就继续递归的从index-1个数中进行一趟排序;如果index < K,那么再从划分元的右边继续进行排序,直到找到序号index刚好等于K为止。再将前K个数进行排序后,返回Top K个元素。这种方法就避免了对除了Top K个元素以外的数据进行排序所带来的不必要的开销。
3、最小堆法
这是一种局部淘汰法。先读取前K个数,建立一个最小堆。然后将剩余的所有数字依次与最小堆的堆顶进行比较,如果小于或等于堆顶数据,则继续比较下一个;否则,删除堆顶元素,并将新数据插入堆中,重新调整最小堆。当遍历完全部数据后,最小堆中的数据即为最大的K个数。
4、分治法
将全部数据分成N份,前提是每份的数据都可以读到内存中进行处理,找到每份数据中最大的K个数。此时剩下NK个数据,如果内存不能容纳NK个数据,则再继续分治处理,分成M份,找出每份数据中最大的K个数,如果M*K个数仍然不能读到内存中,则继续分治处理。直到剩余的数可以读入内存中,那么可以对这些数使用快速排序的变形或者归并排序进行处理。
5、Hash法
如果这些数据中有很多重复的数据,可以先通过hash法,把重复的数去掉。这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间。处理后的数据如果能够读入内存,则可以直接排序;否则可以使用分治法或者最小堆法来处理数据。
栈和队列的区别
栈与队列的相同点:
1.都是线性结构。
2.插入操作都是限定在表尾进行。
3.都可以通过顺序结构和链式结构实现。、
4.插入与删除的时间复杂度都是O(1),在空间复杂度上两者也一样。
5.多链栈和多链队列的管理模式可以相同。
栈与队列的不同点:
1.删除数据元素的位置不同,栈的删除操作在表尾进行,队列的删除操作在表头进行。
2.应用场景不同;常见栈的应用场景包括括号问题的求解,表达式的转换和求值,函数调用和递归实现,深度优先搜索遍历等;常见的队列的应用场景包括计算机系统中各种资源的管理,消息缓冲器的管理和广度优先搜索遍历等。
3.顺序栈能够实现多栈空间共享,而顺序队列不能。
堆和栈的区别
一、堆是由低地址向高地址扩展;栈是由高地址向低地址扩展。
二、堆中的内存需要手动申请和手动释放;栈中内存是由OS自动申请和自动释放,存放着参数、局部变量等内存。
三、堆中频繁调用malloc和free,会产生内存碎片,降低程序效率;而栈由于其先进后出的特性,不会产生内存碎片。
四、堆的分配效率较低,而栈的分配效率较高。
栈的效率高的原因:
一、栈是操作系统提供的数据结构,计算机底层对栈提供了一系列支持:分配专门的寄存器存储栈的地址,压栈和入栈有专门的指令执行;而堆是由C/++函数库提供的,机制复杂,需要一些列分配内存、合并内存和释放内存的算法,因此效率较低。
hash表
hash表的实现主要包括构造哈希和处理哈希冲突两个方面:
对于构造哈希来说,主要包括直接地址法、平方取中法、除留余数法等。
对于处理哈希冲突来说,最常用的处理冲突的方法有开放定址法、再哈希法、链地址法、建立公共溢出区等方法。SGL版本使用链地址法,使用一个链表保持相同散列值的元素。
开放定址法:当发生地址冲突时,按照某种方法继续探测哈希表中的其他存储单元,直到找到空位置为止。
再哈希法:当发生哈希冲突时使用另一个哈希函数计算地址值,直到冲突不再发生。这种方法不易产生聚集,但是增加计算时间,同时需要准备许多哈希函数。
链地址法:将所有哈希值相同的Key通过链表存储。key按顺序插入到链表中。
建立公共溢出区:采用一个溢出表存储产生冲突的关键字。如果公共溢出区还产生冲突,再采用处理冲突方法处理。