HDU 2544 最短路(各种最短路算法的实现)
链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2544
题目:
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
Source
UESTC 6th Programming Contest Online
基础最短路,不解释,其实是专门用来验证各种最短路模板的。
1. Dijkstra 普通版
-
#include<cstdio> -
#include<cstring> -
const int N=105, INF=9999999; -
int d[N], w[N][N],vis[N],n,m; -
void Dijkstra(int src){ -
for(int i=1; i<=n; ++i) -
d[i] = INF; -
d[src] = 0; -
memset(vis, 0, sizeof(vis)); -
for(int i=1; i<=n; ++i){ -
int u=-1; -
for(int j=1; j<=n; ++j)if(!vis[j]){ -
if(u==-1 || d[j]<d[u]) u=j; -
} -
vis[u] = 1; -
for(int j=1; j<=n; ++j)if(!vis[j]){ -
int tmp = d[u] + w[u][j]; -
if(tmp<d[j]) d[j] = tmp; -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
for(int i=1; i<=n; ++i){ -
w[i][i] = INF; -
for(int j=i+1; j<=n; ++j) -
w[i][j] = w[j][i] = INF; -
} -
for(int i=0; i<m; ++i){ -
scanf("%d%d%d",&a,&b,&c); -
w[a][b] = w[b][a] = c; -
} -
Dijkstra(1); -
printf("%d\n", d[n]); -
} -
return 0; -
}
2. Dijkstra+邻接表(用数组实现)+优先队列优化
-
#include<cstdio> -
#include<cstring> -
#include<utility> -
#include<queue> -
using namespace std; -
const int N=20005; -
const int INF=9999999; -
typedef pair<int,int>pii; -
priority_queue<pii, vector<pii>, greater<pii> >q; -
int d[N], first[N], u[N], v[N], w[N], next[N],n,m; -
bool vis[N]; -
// 无向图的输入,注意每输入的一条边要看作是两条边 -
void read_graph(){ -
memset(first, -1, sizeof(first)); //初始化表头 -
for(int e=1; e<=m; ++e){ -
scanf("%d%d%d",&u[e], &v[e], &w[e]); -
u[e+m] = v[e]; v[e+m] = u[e]; w[e+m] = w[e]; // 增加一条它的反向边 -
next[e] = first[u[e]]; // 插入链表 -
first[u[e]] = e; -
next[e+m] =first[u[e+m]]; // 反向边插入链表 -
first[u[e+m]] = e+m; -
} -
} -
void Dijkstra(int src){ -
memset(vis, 0, sizeof(vis)); -
for(int i=1; i<=n; ++i) d[i] = INF; -
d[src] = 0; -
q.push(make_pair(d[src], src)); -
while(!q.empty()){ -
pii u = q.top(); q.pop(); -
int x = u.second; -
if(vis[x]) continue; -
vis[x] = true; -
for(int e = first[x]; e!=-1; e=next[e]) if(d[v[e]] > d[x]+w[e]){ -
d[v[e]] = d[x] + w[e]; -
q.push(make_pair(d[v[e]], v[e])); -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
read_graph(); -
Dijkstra(1); -
printf("%d\n", d[n]); -
} -
return 0; -
}
3. Dijkstra+邻接表(用vecor实现)+优先队列优化
-
#include<cstdio> -
#include<cstring> -
#include<utility> -
#include<queue> -
#include<vector> -
using namespace std; -
const int N=105; -
const int INF=9999999; -
typedef pair<int,int>pii; -
vector<pii>G[N]; -
priority_queue<pii, vector<pii>, greater<pii> >q; -
int d[N], first[N], u[N], v[N], w[N], next[N],n,m; -
bool vis[N]; -
// 无向图的输入,注意没输入的一条边要看作是两条边 -
void read_graph(){ -
for(int i=1; i<=n; ++i) -
G[i].clear(); -
int a,b,c; -
for(int i=1; i<=m; ++i){ -
scanf("%d%d%d",&a,&b,&c); -
G[a].push_back(make_pair(b,c)); -
G[b].push_back(make_pair(a,c)); -
} -
} -
void Dijkstra(int src){ -
memset(vis, 0, sizeof(vis)); -
for(int i=1; i<=n; ++i) d[i] = INF; -
d[src] = 0; -
q.push(make_pair(d[src], src)); -
while(!q.empty()){ -
pii t = q.top(); q.pop(); -
int u = t.second; -
if(vis[u]) continue; -
vis[u] = true; -
for(int v=0; v<G[u].size(); ++v)if(d[G[u][v].first] > d[u]+G[u][v].second){ -
d[G[u][v].first] = d[u]+G[u][v].second; -
q.push(make_pair(d[G[u][v].first], G[u][v].first)); -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
read_graph(); -
Dijkstra(1); -
printf("%d\n", d[n]); -
} -
return 0; -
}
二,Bellman-Ford算法
-
#include<cstdio> -
#include<cstring> -
#include<utility> -
#include<queue> -
using namespace std; -
const int N=20005; -
const int INF=9999999; -
int n, m, u[N],v[N],w[N], d[N]; -
// 无向图的输入,注意每输入的一条边要看作是两条边 -
inline void read_graph(){ -
for(int e=1; e<=m; ++e){ -
scanf("%d%d%d",&u[e],&v[e],&w[e]); -
} -
} -
inline void Bellman_Ford(int src){ -
for(int i=1; i<=n; ++i) d[i] = INF; -
d[src] = 0; -
for(int k=0; k<n-1; ++k){ -
for(int i=1; i<=m; ++i){ -
int x=u[i], y=v[i]; -
if(d[x] < INF){ -
if(d[y]>d[x]+w[i]) -
d[y] = d[x]+w[i]; -
} -
if(d[y] < INF){ -
if(d[x]>d[y]+w[i]) -
d[x] = d[y]+w[i]; -
} -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
read_graph(); -
Bellman_Ford(1); -
printf("%d\n", d[n]); -
} -
return 0; -
}
三,SPFA
邻接表实现
-
#include<cstdio> -
#include<cstring> -
#include<utility> -
#include<queue> -
using namespace std; -
const int N=20005; -
const int INF=2147483646>>1; -
int n, m, first[N],next[N],u[N],v[N],w[N], d[N]; -
bool vis[N]; -
queue<int>q; -
inline void read_graph(){ -
memset(first, -1, sizeof(first)); -
for(int e=1; e<=m; ++e){ -
scanf("%d%d%d",&u[e],&v[e],&w[e]); -
u[e+m]=v[e], v[e+m]=u[e], w[e+m]=w[e]; -
next[e] = first[u[e]]; -
first[u[e]] = e; -
next[e+m] = first[u[e+m]]; -
first[u[e+m]] = e+m; -
} -
} -
void SPFA(int src){ -
memset(vis, 0, sizeof(vis)); -
for(int i=1; i<=n; ++i) d[i] = INF; -
d[src] = 0; -
vis[src] = true; -
q.push(src); -
while(!q.empty()){ -
int x = q.front(); q.pop(); -
vis[x] = false; -
for(int e=first[x]; e!=-1; e=next[e]){ -
if(d[x]+w[e] < d[v[e]]){ -
d[v[e]] = d[x]+w[e]; -
if(!vis[v[e]]){ -
vis[v[e]] = true; -
q.push(v[e]); -
} -
} -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
read_graph(); -
SPFA(1); -
printf("%d\n", d[n]); -
} -
return 0; -
}
四, Floyd算法
-
#include<cstdio> -
#include<cstring> -
#include<utility> -
#include<queue> -
using namespace std; -
const int N=105; -
const int INF=2147483646; -
int n, m, d[N][N]; -
inline void read_graph(){ -
for(int i=1; i<=n; ++i){ -
d[i][i] = INF; -
for(int j=i+1; j<=n; ++j) -
d[i][j]=d[j][i]=INF; -
} -
int a,b,c; -
for(int e=1; e<=m; ++e){ -
scanf("%d%d%d",&a,&b,&c); -
d[a][b]=d[b][a]=c; -
} -
} -
inline void Floyd(int src){ -
for(int k=1; k<=n; ++k){ -
for(int i=1; i<=n; ++i){ -
for(int j=1; j<=n; ++j) -
if(d[i][k]<INF && d[k][j]<INF){ //防止溢出 -
d[i][j] = min(d[i][j], d[i][k]+d[k][j]); -
} -
} -
} -
} -
int main(){ -
int a,b,c; -
while(~scanf("%d%d",&n,&m)&&n+m){ -
read_graph(); -
Floyd(1); -
printf("%d\n", d[1][n]); -
} -
return 0; -
}
—— 生命的意义,在于赋予它意义。
原创 http://blog.csdn.net/shuangde800 , By D_Double (转载请标明)
