吳恩達 神經網絡與深度學習 第二課第三周課後作業
吳恩達 神經網絡與深度學習 第二課第三周課後作業
Let us build one hidden layer neutral network.
1-packages
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
from operator import mod
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
%matplotlib inline
np.random.seed(1) # set a seed so that the results are consistent
2-Neutral Network Model
2.1 Defining the neutral network structure
Exercise: Define three variables:
- n_x: 輸入層的個數
- n_h: 隱層個數 (set this to 4)
- n_y: 輸出層的個數
Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.
2.2 Initialize the model’s parameters
Exercise: Implement the function initialize_parameters().
Instructions:
Make sure your parameters’ sizes are right. Refer to the neural network figure above if needed.
You will initialize the weights matrices with random values.
Use: np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shape (a,b).
You will initialize the bias vectors as zeros.
Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.
#GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
""" Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """
np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h,n_x)*0.01
b1 = np.zeros((n_h,1))
W2 = np.random.randn(n_y,n_h)*0.01
b2 = np.zeros((n_y,1))
### END CODE HERE ###
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
2.3 實現前向傳播
Instructions:
Look above at the mathematical representation of your classifier.
輸出層使用 sigmoid().
hidden layer使用 np.tanh().
實現步驟:
首先從parameters中取出需要的參數
計算Z[1],A[1],Z[2]Z[1],A[1],Z[2] and A[2]A[2]
#GRADED FUNCTION: forward_propagation
def forward_propagation(X, parameters):
""" Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
### END CODE HERE ###
# Implement Forward Propagation to calculate A2 (probabilities)
### START CODE HERE ### (≈ 4 lines of code)
Z1 = np.dot(W1,X)+b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2,A1)+b2
A2 = sigmoid(Z2)#y hat
### END CODE HERE ###
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
2.4 計算cost function
J=−1m∑i=0m(y(i)log(a2)+(1−y(i))log(1−a2))
其中,我們計算−∑i=0my(i)log(a2)−∑i=0my(i)log(a2):
可以用函數
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs) # 此處使用numpy不需要loop
(也可以直接用函數np.dot(),相乘後相加).
#GRADED FUNCTION: compute_cost
def compute_cost(A2, Y, parameters):
""" Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 Returns: cost -- cross-entropy cost given equation (13) """
m = Y.shape[1] # number of example
# Compute the cross-entropy cost
### START CODE HERE ### (≈ 2 lines of code)
logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2),1-Y)
cost = -np.sum(logprobs)/m
### END CODE HERE ###
cost = np.squeeze(cost) # makes sure cost is the dimension w e expect.
# E.g., turns [[17]] into 17
assert(isinstance(cost, float))
return cost
2.5 實現後向傳播
//缺公式
# GRADED FUNCTION: backward_propagation
def backward_propagation(parameters, cache, X, Y):
""" Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """
m = X.shape[1]
# First, retrieve W1 and W2 from the dictionary "parameters".
### START CODE HERE ### (≈ 2 lines of code)
W1 = parameters['W1']
W2 = parameters['W2']
### END CODE HERE ###
# Retrieve also A1 and A2 from dictionary "cache".
### START CODE HERE ### (≈ 2 lines of code)
A1 = cache['A1']
A2 = cache['A2']
### END CODE HERE ###
# Backward propagation: calculate dW1, db1, dW2, db2.
### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
dZ2 = A2-Y
dW2 = np.dot(dZ2,A1.T)/m
db2 = np.sum(dZ2,axis=1,keepdims=True)/m
dZ1 = np.dot(W2.T,dZ2) * (1-np.power(A1,2))
dW1 = np.dot(dZ1,X.T)/m
db1 = np.sum(dZ1,axis=1,keepdims=True)/m
### END CODE HERE ###
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
2.5 梯度下降算法實現
θ=θ−α∂J/∂θ 其中 α 代表學習率and θ 代表參數.
# GRADED FUNCTION: update_parameters
def update_parameters(parameters, grads, learning_rate = 1.2):
""" Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """
# Retrieve each parameter from the dictionary "parameters"
### START CODE HERE ### (≈ 4 lines of code)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###
# Retrieve each gradient from the dictionary "grads"
### START CODE HERE ### (≈ 4 lines of code)
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
## END CODE HERE ###
# Update rule for each parameter
### START CODE HERE ### (≈ 4 lines of code)
W1 -= learning_rate*dW1
b1 -= learning_rate*db1
W2 -= learning_rate*dW2
b2 -= learning_rate*db2
### END CODE HERE ###
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
3-NN_model() Implement
# GRADED FUNCTION: nn_model
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
""" Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
### START CODE HERE ### (≈ 5 lines of code)
parameters = initialize_parameters(n_x,n_h,n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
### END CODE HERE ###
# Loop (gradient descent)
for i in range(0, num_iterations):
### START CODE HERE ### (≈ 4 lines of code)
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X,parameters)
#print("cache:"+str(cache))
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2,Y,parameters)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters,cache,X,Y)
# print("grads:"+str(grads))
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters,grads)
#print("parameters:"+str(parameters))
### END CODE HERE ###
# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
4-預測
predictions = yprediction={activation > 0.5}={1,0
if activation>0.5otherwise
A2, cache = forward_propagation(X,parameters)
predictions = (A2>0.5)
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
predictions = predict(parameters, X)