深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测 1.交叉熵损失函数 在物理学中,“熵”被用来表示热力学系统所呈现的无序程度。香农将这一概念引入信息论领域,提出了“信息熵”概念,通过对数函数来测量信息的不确定性。交叉熵(cross entropy)是信息论中的重要概念,主要用来度量两个概率分布间的差异。假定 p和 q是数据 x的两个概率分布,通过 q来表示 p的交叉熵可如下计算: H(p,q)=−∑xp(x)logq(x)H\left(p,q\right)=-\sum\limits_{x}p\left(x\right...