首页 / Ai产品经理
#

Ai产品经理

#
5289次浏览 149人互动
此刻你想和大家分享什么
热门 最新
面试官:Deepseek推理大模型与指令大模型(如豆包、文心)等有什么不同?
一、训练范式与核心技术1. 强化学习主导- DeepSeek-R1基于大规模强化学习(RL)完成后训练,其强化学习训练占比超过95%,甚至存在完全依赖RL的DeepSeek-R1-Zero版本。- 传统指令模型(如文心、ChatGPT O1)则更依赖监督微调(SFT)和人类反馈的强化学习(RLHF)。2. 冷启动与多阶段训练- DeepSeek-R1通过引入高质量“冷启动”数据辅助初始阶段学习,并结合多阶段训练策略(如拒绝采样)提升推理能力。- 而指令模型通常直接从预训练模型通过SFT对齐人类偏好。二、能力与任务适配性1. 复杂推理能力- DeepSeek-R1专门针对数学推导、代码生成、逻辑分析等复杂任务优化,其推理过程中支持自我验证、错误检测及多路径探索。- 指令模型更侧重通用对话和指令理解,在复杂推理任务中表现较弱。2. 生成质量差异- DeepSeek-R1的纯RL版本(R1-Zero)存在生成内容可读性较低的问题,需通过混合训练策略改进,- 而指令模型因依赖SFT数据,输出更符合人类语言习惯。三、架构设计与成本效率1. 优化算法创新- DeepSeek-R1采用Group Relative Policy Optimization(GRPO)等新型RL算法,支持无监督条件下的推理能力进化。- 指令模型通常沿用PPO等传统RLHF算法。2. 成本优势- DeepSeek-R1在同等性能下成本比OpenAI o1系列低30倍,且在数学、代码基准测试中达到甚至超越Claude 3.5 Sonnet等模型。四、应用场景与合规性1. 垂直领域适配- DeepSeek-R1更适用于科研、金融等高精度推理场景,- 而ChatGPT O1等指令模型偏向通用客服、教育等泛化场景。          
点赞 评论 收藏
分享
03-21 12:17
已编辑
哈尔滨工业大学 产品经理
面试官:什么是Agent ?与LLM的区别?
Agent(智能体)与LLM(大语言模型)的区别与联系1. Agent的定义Agent(智能体)是一种能够自主感知环境、制定目标、规划行动并执行任务的实体。它通常由多个模块组成,包括:1️⃣感知模块:接收输入(如文本、传感器数据)。2️⃣决策模块:基于目标或规则制定策略(可能依赖LLM或其他模型)。3️⃣记忆模块:存储历史信息或知识。4️⃣执行模块:调用工具或API完成任务(如搜索、计算、控制设备)。Agent的应用场景广泛,例如自动驾驶、智能客服、自动化流程等,强调主动性、持续性和环境交互能力。2. LLM的定义LLM(大语言模型)是一种基于海量文本训练的自然语言处理模型,核心能力是理解和生成文本。例如,GPT-4、Claude等模型擅长文本生成、问答、翻译等任务,但本质上是一个“静态”模型:被动响应:需用户输入触发,无法自主行动。1️⃣无记忆性:默认不保留上下文(需通过技术手段实现)。2️⃣无工具调用能力:需依赖外部系统扩展功能。3. 核心区别1️⃣自主性Agent能主动规划任务并调用工具(如API、搜索引擎),持续与环境交互。LLM仅被动响应用户输入,无法独立决策或执行动作。2️⃣功能范围不同:Agent是多模块系统,整合记忆、推理、工具调用等功能,适用于复杂任务链(如自动化流程)。LLM仅处理文本输入输出,需依赖外部系统扩展功能(如通过插件调用工具)。3️⃣架构与复杂性:Agent是系统级架构,包含感知、决策、执行等组件,需管理动态任务流程。LLM是单一模型,仅作为Agent的“语言处理模块”存在。4. 联系与协作1️⃣LLM可作为Agent的“大脑”:Agent常利用LLM处理自然语言理解、生成和简单推理,例如分析用户意图或生成回复。2️⃣Agent扩展LLM的能力:通过整合记忆、工具调用等模块,Agent使LLM突破纯文本交互的限制,例如AutoGPT调用搜索引擎或API完成任务。总结来说:Agent是“行动者”:具备自主性和系统性,能独立完成复杂任务。LLM是“语言专家”:专注文本处理,需依赖外部系统实现功能扩展。         
点赞 评论 收藏
分享
面试官:Agent智能体核心构成模块?
1. 感知模块(Perception)- 功能:通过传感器、API、文本/语音输入等方式,从环境或用户处获取原始数据。- 关键技术:多模态数据处理(文本、语音、图像)、信号降噪、数据标准化。- 产品视角:需平衡数据采集效率与用户隐私(如明确告知数据用途)。2. 认知与决策模块(Cognition & Decision-Making)- 理解层:自然语言处理(NLP)、计算机视觉(CV)解析输入内容。- 知识库:存储长期记忆(领域知识库、用户画像)和短期记忆(会话上下文)。- 推理与决策:基于规则引擎、机器学习模型(如强化学习)或规划算法生成行动策略。- 产品视角:需关注决策透明性(如可解释性AI)与伦理风险(如避免偏见)。3. 执行模块(Action)- 功能:将决策转化为具体行动,如控制硬件、调用API、生成回复。- 关键技术:动作序列编排、与外部系统集成(如IoT设备)。- 产品视角:需设计容错机制(如执行失败后的回退策略)。4. 学习与优化模块(Learning & Adaptation)- 持续学习:通过用户反馈、在线学习(Online Learning)更新模型。- 自适应机制:动态调整策略(如对话系统根据用户情绪改变语气)。- 产品视角:需平衡模型迭代速度与稳定性(如A/B测试验证新策略)。5. 交互模块(Interaction)- 多模态交互:支持语音、GUI、手势等交互方式。- 对话管理:维护上下文、处理多轮对话跳转(如电商客服的订单追踪)。- 产品视角:注重用户体验设计(如减少交互摩擦、提供情感化反馈)。6. 系统与安全模块(System & Safety)- 资源协调:多任务调度、计算资源分配(如边缘计算优化)。- 安全合规:数据加密、偏见检测、异常行为监控(如自动驾驶的紧急制动)。- 产品视角:需符合行业法规(如GDPR)并建立用户信任。7. 评估与反馈闭环(Evaluation & Feedback Loop)                
点赞 评论 收藏
分享
面试官:大模型评测的核心指标有哪些?
一、模型核心能力评估1. 认知准确性   1.1 基础准确率       - 通用场景Top-1准确率>82%(置信区间±2%)   1.2 领域专精度       - 医疗QA准确率≥89%(USMLE测试集)       - 法律条文解析准确率≥91%(Bar Exam基准)   1.3 抗幻觉指数       - TruthfulQA准确率>65%        - 事实错误率<3%(5000次对话统计值)2. 生成品质   2.1 语义相关度       - BERTScore>0.85(阈值参考MS MARCO标准)   2.2 逻辑连贯性       - 人工评估8分制达6.5+        - 跨段落验证通过率>80%   2.3 创新多样性       - Distinct-3>0.45(开放域对话场景)       - 生成重复率<15%(连续3轮对话)3. 交互流畅度   3.1 响应效能       - 端到端P95时延<1.8s(含网络传输)       - 首token延迟<400ms(视觉感知临界值)   3.2 多轮记忆       - 32k上下文窗口下话题保持率>92%       - 实体记忆准确率>88%(10轮对话测试)   3.3 容错机制       - 错误应答自主修正成功率>70%       - 歧义澄清触发准确率>85%4. 价值感知   4.1 任务达成率       - 工具类场景>93%(如代码生成/文档摘要)       - 客服场景>88%(含工单转接场景)   4.2 用户粘性       - 7日留存>35%(工具类产品基准)       - 日均对话轮次>5.2(社交类场景)   4.3 心智占位       - NPS净推荐值>65(超越ChatGPT 45基准)       - 品牌提及率>40%(未提示场景调研)5. 成本效益   5.1 推理经济性       - 7B模型单次请求成本<$0.0008(动态量化后)       - 千次调用成本<$0.8(考虑流量折扣)   5.2 资源利用率       - 动态批处理QPS>60(A10 GPU基准)       - 显存占用<12GB(INT8量化后)   5.3 冷启动优化       - 容器化部署<25s(含模型预热)       - 自动扩缩容响应<8s(突发流量场景)6. 场景适配   6.1 领域扩展性       - 新业务适配周期<3人日(基于LoRA微调)       - 跨领域迁移准确率>75%(少样本场景)   6.2 风险控制       - 敏感内容拦截率>99.5%(AUC>0.98)       - 合规审核通过率100%(GDPR/HIPAA场景)   6.3 商业转化       - 线索转化率提升>15%(对比规则引擎)       - 人工替代率>40%(客服场景实测)1️⃣技术验证阶段     对抗测试集验证         TruthfulQA/LAMBADA2️⃣用户体验验证     眼动实验+行为埋点      Hotjar/Mixpanel3️⃣业务价值验证     A/B测试+转化漏斗分析  Optimizely/GrowthBook指标健康度看板:技术指标权重40% | 体验指标30% | 商业指标30%异常波动阈值:单项指标周环比变化>15%触发告警                
点赞 评论 收藏
分享
03-24 21:15
已编辑
哈尔滨工业大学 产品经理
面试官:什么是rag?你理解的rag技术及整体应用流程是什么样的?
              RAG(Retrieval-Augmented Generation)是一种结合了信息检索和文本生成的技术,通过检索相关文档来增强生成模型的能力。RAG的核心思想是在生成文本时,先检索与输入相关的文档,再基于这些文档生成回答。这种方法不仅依赖模型自身的知识,还能利用外部信息源,提升生成内容的准确性和丰富性。应用流程1. 输入处理:   - 用户输入问题或请求。   - 系统对输入进行预处理,如分词、去停用词等。2. 文档检索:   - 使用检索模型(如BM25、DPR)从外部文档库中查找与输入相关的文档。   - 检索模型根据输入与文档的相关性进行排序,返回最相关的文档。3. 生成回答:   - 将检索到的文档和用户输入一起输入生成模型(如GPT)。   - 生成模型结合输入和检索到的文档,生成最终回答。4. 输出结果:   - 系统将生成的回答返回给用户。   - 可根据需要提供检索到的文档作为参考。应用场景- 问答系统:通过检索外部文档生成更准确的回答。- 内容生成:在撰写文章或报告时,检索相关文献增强内容质量。- 客服系统:结合知识库生成更专业的回复。优势- 准确性:通过检索外部信息,减少模型生成错误。- 可解释性:提供检索到的文档,增强结果的可信度。- 灵活性:适用于多种任务,如问答、内容生成等。挑战- 检索质量:检索效果直接影响生成结果。- 计算资源:检索和生成过程需要大量计算资源。- 实时性:大规模文档库的检索可能影响响应速度。RAG技术通过结合检索和生成,提升了生成模型的性能,适用于多种应用场景,但也面临检索质量、计算资源和实时性等挑战。
点赞 评论 收藏
分享
AI时代PM求职启示录:从精准匹配到商业闭环,我的大厂通关密码
在投递命中率上,其实就是做简历和岗位的匹配。为此,在简历优化环节,建议同学们在主简历版本的基础上,优化几个不同的版本,都是对标对应公司的 JD 来优化的,核心就是突出个人优势和项目经验的匹配度。做到这一点,投递命中率就高,比起用一份简历海投的模式要高效很多。在 offer 命中率上,主要做面试问答准备和基于产品闭环的思考和表述框架训练。一般和同学们一对一沟通的1-2个小时里,我通常会用「用户-场景-需求-业务-数据-商业」框架结合项目经验的角度,带大家去优化简历。很多同学意识到,其实过去自己做的事情并不是那么没价值,还是有很多可挖掘的亮点。(比如你的研发技能在产品经理的面试中属于王炸)关键在于,能否看到产品功能背后的需求价值、业务价值和构建整个闭环框架的逻辑。这种区别,是功能思维和产品思维之间的差异化。一套体系化产品工作方法的好处就是在思考、表达、执行时能形成结构,也是很多产品经理同学不可或缺的东西。之后就是面试和offer 选择问题。工作经历本质是资源价值和光环价值,在资源投入、人才密度、数据体量、业务规模上增加明显优势,这个过程中对自己是一次很好的实践训练。利用这个背书给自己谈价增添一些筹码,也有机会涉猎一些 AI 的东西。对于产品经理来说,重要的是循序渐进对AI更加深入的过程。未来产品经理的核心竞争力不仅仅是 AI 能力,还有强大的产品思维和产品认知,因为这才是不变的东西。               
点赞 评论 收藏
分享
03-24 21:16
已编辑
哈尔滨工业大学 产品经理
面试官:如何减轻大模型的幻觉问题?
最近有同学面试AI产品经理时,遇到了这个问题,今日和大家分享一下~面试官:如何减轻大模型的幻觉问题?在AI产品中大模型幻觉问题非常普遍,减轻大模型幻觉问题可从技术优化、产品设计、用户交互和持续迭代四个维度综合施策。1. 技术层:增强模型的“事实核查”能力- 检索增强生成(RAG)‌:结合外部知识库(如维基百科、行业数据库)实时检索,确保生成内容基于最新、可信数据。例如,New Bing通过接入搜索引擎实现动态信息整合。- 微调与对齐‌:在预训练后,用高质量标注数据(标注事实性错误)对模型进行微调,强化“不确定时拒绝回答”或“引用来源”的能力。- 置信度评分与阈值控制‌:模型对生成内容输出置信度分数,低置信度时触发回退机制(如切换至检索模式或提示用户核查)。2. 产品层:引导用户合理预期与交互- 明确能力边界‌:在用户界面标注模型局限性(如“可能包含不准确信息”),避免用户过度依赖生成结果。- 实时反馈与标注‌:- 对高风险领域(医疗、法律)的答案自动标注警示,并提供“验证来源”按钮。- 生成内容附带来源引用(如“根据2023年XX研究”),提升可信度。- 用户纠错机制‌:设计一键反馈入口(如“报告错误”),收集幻觉案例用于模型迭代。3. 评估与监控:构建事实性指标体系- 自动化评估‌:引入事实性评测工具(如FactScore、TruthfulQA),定期测试模型在关键领域的准确性。- 人工审核Pipeline‌:对高频场景(如新闻摘要、知识问答)建立抽样审核流程,识别潜在幻觉模式。- 实时监控‌:部署异常检测系统,拦截明显矛盾或反常识内容(如“太阳从西边升起”)。4. 迭代策略:数据与场景的持续优化- 领域自适应‌:针对垂直场景(金融、医疗)补充专业数据,降低开放域幻觉风险。- 多模态融合‌:结合图文、结构化数据等多模态输入,提升上下文理解准确性(如用图表辅助生成财务分析)。- 用户行为分析‌:优化提示设计(如要求用户提供背景信息),减少模糊查询导致的幻觉。         
点赞 评论 收藏
分享
03-24 21:13
已编辑
哈尔滨工业大学 产品经理
面试官:如何通过SFT优化大模型效果?
1. 明确优化目标   - 任务定义:明确模型需要优化的具体任务(如文本生成、分类、问答等)。   - 性能指标:确定评估模型效果的指标(如准确率、F1分数、BLEU、ROUGE等)。   - 数据需求:根据任务目标,准备高质量的监督数据。2. 准备高质量监督数据   - 数据质量:确保标注数据准确、一致且覆盖任务场景。   - 数据多样性:覆盖任务中的多种情况,避免模型过拟合。   - 数据规模:根据任务复杂度,准备足够数量的样本(通常数千到数百万条)。   - 数据格式:将数据整理为模型输入输出对(如 (input, target))。3. 模型初始化   - 选择预训练模型:根据任务选择合适的预训练模型(如 GPT、BERT 等)。   - 冻结部分参数:对于小规模数据集,可以冻结部分底层参数,只微调顶层参数。   - 学习率设置:使用较低的学习率(如 1e-5 到 1e-4),避免破坏预训练模型的知识。4. 微调过程   - 损失函数:根据任务选择合适的损失函数(如交叉熵损失用于分类任务)。   - 批量训练:使用合适的批量大小(batch size),平衡训练速度和稳定性。   - 正则化:通过 dropout、权重衰减等方法防止过拟合。   - 早停策略:监控验证集性能,避免过拟合。5. 评估与迭代   - 验证集评估:在独立的验证集上评估模型性能。   - 错误分析:分析模型错误案例,针对性补充数据或调整训练策略。   - 多轮微调:根据评估结果,进行多轮迭代优化。6. 高级优化策略   - 任务特定提示(Prompt Tuning):设计更好的输入提示(prompt),引导模型生成更准确的输出。   - 数据增强:通过数据增强技术(如同义词替换、回译等)扩充训练数据。   - 混合训练:结合无监督学习和有监督学习,提升模型泛化能力。   - 领域适应:如果任务涉及特定领域,可以使用领域内数据进行进一步微调。7. 部署与监控   - 模型压缩:通过量化、剪枝等技术降低模型推理成本。   - 持续学习:在实际应用中收集新数据,定期更新模型。   - 性能监控:监控模型在实际场景中的表现,及时发现和修复问题。             
点赞 评论 收藏
分享
03-24 21:15
已编辑
哈尔滨工业大学 产品经理
面试隐藏技能——核心分解法
今年的面试准备中,我常常向同学们介绍任务分解法,这是一种工作必备的隐藏版技能。1. 优秀的人往往擅长将复杂问题分类拆解,如果不这样做,我们很难实现合理的资源配置和计划调度。这种方法在工程领域被称为“分治法”,“Divide and Conquer”更是形象地揭示了其核心思想——将问题分解,然后逐个击破。2.更形象的说,这一概念最早源于军事策略。在战场上,兵力优势固然重要,但战术的运用更为关键。例如,3万敌军对阵2万兵力,看似前者占优,但如果你能将3万敌军分散成三股,分别用你的2万兵力逐个击破,以少胜多并非不可能。这种策略的核心在于将庞大的问题拆解为可管理的小部分,从而化繁为简。3. 很多同学可能会问:“分解任务后,任务总量并没有减少,为什么还要多此一举?”问题的关键在于,当面对一个过于庞大或复杂的问题时,我们往往无法真正开始思考。你以为你理解了问题,但实际上你只是被问题的规模所压倒,并没有找到解决问题的切入点。举个例子,如果有人请你开发一个记事本APP,并问你多久能完成,你可能会感到无从下手。因为这个问题过于笼统和庞大。但如果你将这个问题分解——主界面需要列出所有笔记,点击笔记可以进入详情页,主界面还需要有新建和编辑按钮——这时,你就能更清晰地估算时间:主界面可能需要4小时,详情页2小时,编辑功能3小时,等等。通过分解任务,你不仅能更准确地评估工作量,还能更高效地推进项目。这种方法不仅适用于技术开发,也适用于任何复杂问题的解决。它帮助我们从混乱中理清思路,找到突破口,形成高效解决方案。           
点赞 评论 收藏
分享
玩命加载中
牛客网
牛客企业服务